
EQUIVARIANT SUBGRAPH AGGREGATION NETWORKS

Beatrice Bevilacqua∗
Purdue University
bbevilac@purdue.edu

Fabrizio Frasca∗
Imperial College London & Twitter
ffrasca@twitter.com

Derek Lim∗
MIT CSAIL
dereklim@mit.edu

Balasubramaniam Srinivasan
Purdue University
bsriniv@purdue.edu

Chen Cai
UCSD CSE
c1cai@ucsd.edu

Gopinath Balamurugan
University of Tuebingen
gbm0998@gmail.com

Michael M. Bronstein
Imperial College London & Twitter
mbronstein@twitter.com

Haggai Maron
NVIDIA Research
hmaron@nvidia.com

ABSTRACT

Message-passing neural networks (MPNNs) are the leading architecture for deep
learning on graph-structured data, in large part due to their simplicity and scal-
ability. Unfortunately, it was shown that these architectures are limited in their
expressive power. This paper proposes a novel framework called Equivariant Sub-
graph Aggregation Networks (ESAN) to address this issue. Our main observation
is that while two graphs may not be distinguishable by an MPNN, they often
contain distinguishable subgraphs. Thus, we propose to represent each graph as
a set of subgraphs derived by some predefined policy, and to process it using a
suitable equivariant architecture. We develop novel variants of the 1-dimensional
Weisfeiler-Leman (1-WL) test for graph isomorphism, and prove lower bounds on
the expressiveness of ESAN in terms of these new WL variants. We further prove
that our approach increases the expressive power of both MPNNs and more ex-
pressive architectures. Moreover, we provide theoretical results that describe how
design choices such as the subgraph selection policy and equivariant neural archi-
tecture affect our architecture’s expressive power. To deal with the increased com-
putational cost, we propose a subgraph sampling scheme, which can be viewed as
a stochastic version of our framework. A comprehensive set of experiments on
real and synthetic datasets demonstrates that our framework improves the expres-
sive power and overall performance of popular GNN architectures.

1 INTRODUCTION

Owing to their scalability and simplicity, Message-Passing Neural Networks (MPNNs) are the lead-
ing Graph Neural Network (GNN) architecture for deep learning on graph-structured data. However,
Morris et al. (2019); Xu et al. (2019) have shown that these architectures are at most as expressive
as the Weisfeiler-Lehman (WL) graph isomorphism test (Weisfeiler & Leman, 1968). As a con-
sequence, MPNNs cannot distinguish between very simple graphs (See Figure 1). In light of this
limitation, a question naturally arises: is it possible to improve the expressiveness of MPNNs?

Several recent works have proposed more powerful architectures. One of the main approaches in-
volves higher-order GNNs equivalent to the hierarchy of the k-WL tests (Morris et al., 2019; 2020b;
Maron et al., 2019b;a; Keriven & Peyré, 2019; Azizian & Lelarge, 2021; Geerts, 2020), offering a
trade-off between expressivity and space-time complexity. Unfortunately, it is already difficult to
implement 3rd order networks (which offer the expressive power of 3-WL). Alternative approaches
use standard MPNNs enriched with structural encodings for nodes and edges (e.g. based on cycle or
clique counting) (Bouritsas et al., 2020; Thiede et al., 2021) or lift graphs into simplicial- (Bodnar
et al., 2021b) or cell complexes (Bodnar et al., 2021a), extending the message passing mechanism to
these higher-order structures. Both types of approaches require a precomputation stage that, though
reasonable in practice, might be expensive in the worst case.

∗Equal contribution, authors are in alphabetical order.

1

ar
X

iv
:2

11
0.

02
91

0v
1

 [
cs

.L
G

]
 6

 O
ct

 2
02

1

Figure 1: We present a provably expressive graph learning framework based on representing graphs
as bags of subgraphs and processing them with an equivariant architecture, composed of GNNs and
set networks. Left panel: A pair of graphs not distinguishable by the WL test. Right panel: The
corresponding bags (multisets) of all edge-deleted subgraphs, which can be distinguished by our
framework.

Our approach. In an effort to devise simple, intuitive and more flexible provably expressive graph
architectures, we develop a novel framework, dubbed Equivariant Subgraph Aggregation Networks
(ESAN), to enhance the expressive power of existing GNNs. Our solution emerges from the ob-
servation that while two graphs may not be distinguishable by an MPNN, it may be easy to find
distinguishable subgraphs. More generally, instead of encoding multisets of node colors as done in
MPNNs and the WL test, we opt for encoding bags (multisets) of subgraphs and show that such an
encoding can lead to a better expressive power. Following that observation, we advocate represent-
ing each graph as a bag of subgraphs chosen according to some predefined policy, e.g., all graphs
that can be obtained by removing one edge from the original graph. Figure 1 illustrates this idea.

Bags of subgraphs are highly structured objects whose symmetry arises from both the structure of
each constituent graph as well as the multiset on the whole. We propose an equivariant architec-
ture specifically tailored to capture this object’s symmetry group. Specifically, we first formulate
the symmetry group for a set of graphs as the direct product of the symmetry groups for sets and
graphs. We then construct a neural network comprising layers that are equivariant to this group.
Motivated by Maron et al. (2020), these layers employ two base graph encoders as subroutines: The
first encoder implements a Siamese network processing each subgraph independently; The second
acts as an information sharing module by processing the aggregation of the subgraphs. After being
processed by several such layers, a set learning module aggregates the obtained subgraph represen-
tations into an invariant representation of the original graph that is used in downstream tasks.

An integral component of our method, with major impact on its complexity and expressivity, is
the subgraph selection policy: a function that maps a graph to a bag of subgraphs, which is then
processed by our equivariant neural network. In this paper, we explore four simple — yet powerful
— subgraph selection policies: node-deleted subgraphs, edge-deleted subgraphs, and two variants
of ego-networks. To alleviate the possible computational burden, we also introduce an efficient
stochastic version of our method implemented by random sampling of subgraphs according to the
aforementioned policies.

We provide a thorough theoretical analysis of our approach. We first prove that our architecture can
implement novel and provably stronger variants of the well-known WL test, capable of encoding
the multiset of subgraphs according to the base graph encoder (e.g., WL for MPNNs). Furthermore,
we study how the expressive power of our architecture depends on different main design choices
like the underlying base graph encoder or the subgraph selection policy. Notably, we prove that our
framework can separate 3-WL indistinguishable graphs using only a 1-WL graph encoder, and that
it can enhance the expressive power of stronger architectures such as PPGN (Maron et al., 2019a).

We then present empirical results on a wide range of synthetic and real datasets, using several ex-
isting GNNs as base encoders. Firstly, we study the expressive power of our approach using the
synthetic datasets introduced by Abboud et al. (2020) and show that it achieves perfect accuracy.

2

We then evaluate ESAN on popular graph benchmarks and show that they consistently outperform
their base GNN architectures, and perform better or on-par with state of the art methods.

Main contributions. This paper offers the following main contributions: (1) A general formulation
of learning on graphs as learning on bags of subgraphs; (2) An equivariant framework for gener-
ating and processing bags of subgraphs; (3) A comprehensive theoretical analysis of the proposed
framework, subgraph selection policies, and their expressive power; (4) An in-depth experimental
evaluation of the proposed approach, showing noticeable improvements on real and synthetic data.
We believe that our approach is a step forward in the development of simple and provably powerful
GNN architectures, and hope that it will inspire both theoretical and practical future research efforts.

2 EQUIVARIANT SUBGRAPH AGGREGATION NETWORKS (ESAN)

In this section, we introduce the ESAN framework. It consists of (1) Neural network architectures
for processing bags of subgraphs (DSS-GNN and DS-GNN), and (2) Subgraph selection policies.
We refer the reader to Appendix A for a brief introduction to GNNs, set learning, and equivariance.

Setup and overview. We assume a standard graph classification/regression setting.1 We represent
a graph with n nodes as a tuple G = (A,X) where A ∈ Rn×n is the graph’s adjacency matrix and
X ∈ Rn×d is the node feature matrix. The main idea behind our approach is to represent the graph
G as a bag (multiset) SG = {{G1, . . . , Gm}} of its subgraphs, and to make a prediction on a graph
based on this subset, namely F (G) := F (SG). Two crucial questions pertain to this approach: (1)
Which architecture should be used to process bags of graphs, i.e., How to define F (SG)?, and (2)
Which subgraph selection policy should be used, i.e., How to define SG?

2.1 BAG-OF-GRAPHS ENCODER ARCHITECTURE

To address the first question, we start from the natural symmetry group of a bag of graphs. We first
devise an equivariant architecture called DSS-GNN based on this group, and then propose a par-
ticularly interesting variant (DS-GNN) obtained by disabling one of the components in DSS-GNN.

Figure 2: The symmetry structure of a
bag of subgraphs, in this case the set of
all m = 3 edge-deleted subgraphs. This
set of subgraphs is represented as an
m×n×n tensorA (and additional node
features that are not illustrated here).
(τ, σ) ∈ Sm × Sn acts on the tensor A
by permuting the subgraphs (τ) and the
nodes in the subgraphs (σ), which are
assumed to be ordered consistently.

Symmetry group for sets of graphs. The bag SG =
{{G1, . . . , Gm}} of subgraphs of G can be represented as
tensor (A,X) ∈ Rn×n×m×Rn×d×m, assuming the num-
ber of nodes n and the number of subgraphs m are fixed.
Here, A ∈ Rn×n×m represents a set of m adjacency ma-
trices, and X ∈ Rn×d×m represents a set of m node
feature matrices. Since the order of nodes in each sub-
graph, as well as the order of these subgraphs in SG, are
arbitrary, our architecture must be equivariant to changes
of both of these orders. Subgraph symmetries, or node
permutations, are represented by the symmetric group Sn
that acts on a graph via (σ · A)ij = Aσ−1(i)σ−1(j) and
(σ · X)il = Xσ−1(i)l. Set symmetries are the permuta-
tions of the subgraphs in SG, represented by the symmet-
ric group Sm that acts on sets of graphs via (τ · A)ijk =
Aijτ−1(k) and (τ · X)ilk = Xilτ−1(k). These two groups
can be combined using a direct product into a single group
H = Sm × Sn that acts on (A,X) in the following way:

((τ, σ) · A)ijk = Aσ−1(i)σ−1(j)τ−1(k), ((τ, σ) · X)ilk = Xσ−1(i)lτ−1(k)

In other words, τ permutes the subgraphs in the set and σ permutes the nodes in the subgraphs,
as depicted in Figure 2. Importantly, since all the subgraphs originate from the same graph, we
can order their nodes consistently throughout, i.e., the i-th node in all subgraphs represents the i-th
node in the original graph.2 This setting can be seen as a particular instance of the DSS framework
(Maron et al., 2020) applied to a bag of graphs.

1The setup can be easily changed to support node and edge prediction tasks.
2This consistency assumption justifies the fact that we apply the same permutation σ to all subgraphs, rather

than having a different node permutation (σ1, . . . , σm) for each subgraph.

3

Figure 3: DSS-GNN layers and architecture. Left panel: the DSS- GNN architecture is composed
of three blocks: a Feature Encoder, a Readout Layer and a Set Encoder. Right panel: a DSS-GNN
layer is constructed from a Siamese part (orange) and an information-sharing part (yellow).

H-equivariant layers. Our goal is to propose anH-equivariant architecture that can process bags of
subgraphs accounting for their natural symmetry (the product of node and subgraph permutations).
The main building blocks of such equivariant architectures are H-equivariant layers. Unfortunately,
characterizing the set of all equivariant functions can be a difficult task, and most works limit them-
selves to characterizing the spaces of linear equivariant layers. In our case, Maron et al. (2020)
characterized the space of linear equivariant layers for sets of symmetric elements (such as graphs)
with a permutation symmetry group P (Sn in our case). Their study shows that each such layer is
composed of a Siamese component applying a linear P -equivariant layer to each set element inde-
pendently and an information sharing component applying a different linear P -equivariant layer to
the aggregation of all the elements in the set (see Appendix A).

Motivated by the linear characterization, we adopt the same layer structure with Siamese & infor-
mation sharing components, and parameterize these ones using any equivariant GNN layer such as
MPNNs. These layers L : Rn×n×m × Rn×d×m → Rn×n×m × Rn×d′×m map bags of subgraphs
to bags of subgraphs, as follows:

(L(A,X))i = L1(Ai, Xi) + L2
(∑m

j=1Aj ,
∑m
j=1Xj

)
. (1)

Here, Aj , Xj are the adjacency and feature matrices of the j-th subgraph (the j-th components of
the tensorsA,X , respectively), and (L(A,X))i denotes the output of the layer on the i-th subgraph.
L1, L2 : Rn×n × Rn×d → Rn×n × Rn×d′ represent two graph encoders and can be any type of
GNN layer. We refer to L1, L2 as the base graph encoders. When MPNN encoders parameterise
L1, L2, the adjacency matrices of the subgraphs do not change, i.e., the H-equivariant layer outputs
the processed node features with the same adjacency matrix. These layers can also transform the
adjacency structure of the subgraphs, e.g., when using Maron et al. (2019a) as the base encoder.

While the encoder L1 acts on every subgraph independently, L2 allows the sharing of information
across all the subgraphs in SG. In particular, the L2 module operates on the sum of adjacency
and feature matrices across the bag. This is a meaningful operation because the nodes in all the
subgraphs of a particular graph are consistently ordered. As in the original DSS paper, this sum
aggregator for the adjacency and feature matrices (

∑m
j=1Aj and

∑m
j=1Xj) can be replaced with

(1) Sums that exclude the current subgraph (
∑m
j 6=iAj and

∑m
j 6=iXj) or with (2) Other aggregators

such as max and mean. We note that for the subgraph selection policies we consider in Subsection
2.2, an entrywise max aggregation over the subgraph adjacency matrices, A = maxj Aj , recovers
the original graph connectivity. This is a convenient choice in practice and we use it throughout
the paper. Finally, the H-equivariance of the layer follows directly from the Sn-equivariance of
the base-encoder, and the Sm-equivariance of the aggregation. Figure 3 (right panel) illustrates our
suggested H-equivariant layer.

DSS-GNN comprises three components:
FDSS-GNN = Esets ◦Rsubgraphs ◦ Esubgraphs (2)

The first component is an Equivariant Feature Encoder, Esubgraphs : Rn×n×m × Rn×d×m →
Rn×n×m × Rn×d′×m implemented as a composition of several H-equivariant layers (Equation 1).

4

The purpose of the subgraph encoder is to learn useful node features for all the nodes in all sub-
graphs. On top of the graph encoder, we apply a Subgraph Readout Layer Rsubgraphs : Rn×n×m ×
Rn×d′×m → Rd′×m that generates an invariant feature vector for each subgraph independently by
aggregating the graph node (and/or edge) data, for example by summing the node features. The last
layer, Esets : Rd′×m → Rd′′ , is a universal Set Encoder, for example DeepSets (Zaheer et al., 2017)
or PointNet (Qi et al., 2017). Figure 3 (left panel) illustrates the DSS-GNN architecture.

Intuitively, DSS-GNN encodes the subgraphs (while taking into account the other subgraphs) into
a set of Sn-invariant representations (Esubgraphs ◦ Rsubgraphs) and then encodes the resulting set of
subgraph representations into a single H-invariant representation Esets of the original graph G.

DS-GNN is a variant of DSS-GNN obtained by disabling the information sharing component, i.e.,
by setting L2 = 0 in Equation 1 for each layer in Esubgraphs. As a result, the subgraphs are encoded
independently, and Esubgraphs is effectively a Siamese network. DS-GNN can be interpreted as a
Siamese network that encodes each subgraph independently, followed by a set encoder that encodes
the set of subgraph representations. DS-GNN is invariant to a larger symmetry group obtained from
the wreath product Sn o Sm.3

In Section 3, we will show that both DS-GNN and DSS-GNN are powerful architectures and that in
certain cases DSS-GNN has superior expressive power.

2.2 SUBGRAPH SELECTION POLICIES

The second question, How to select the subgraphs?, has a direct effect on the expressive power
of our architecture. Here, we discuss subgraph selection policies and present simple but powerful
schemes that will be analyzed in Section 3.

Let G be the set of all graphs with n nodes or less, and let P(G) be its power set, i.e. the set of all
subsets S ⊆ G. A subgraph selection policy is a function π : G → P(G) that assigns to each graph
G a subset of the set of its subgraphs π(G). We require that π is invariant to permutations of the
nodes in the graphs, namely that π(G) = π(σ ·G), where σ ∈ Sn is a node permutation, and σ ·G
is the graph obtained after applying σ. We will use the following notation: π(G) := SπG. As before,
SπG can be represented in tensor form, where we stack subgraphs in arbitrary order while making
sure that the order of the nodes in the subgraphs is consistent.

In this paper, we explore four simple subgraph selection policies that prove to strike a good balance
between complexity (the number of subgraphs) and the resulting expressive power: node-deleted
subgraphs (ND), edge-deleted subgraphs (ED), and ego-networks (EGO, EGO+), as described next.
In the node-deleted policy, a graph is mapped to the set containing all subgraphs that can be ob-
tained from the original graph by removing a single node.4 Similarly, the edge-deleted policy is
defined by removing a single edge. The ego-networks policy EGO maps each graph to a set of
ego-networks of some specified depth, one for each node in the graph (a k-Ego-network of a node
is its k-hop neighbourhood with the induced connectivity). We also consider a variant of the ego-
networks policy where the root node holds an identifying feature (EGO+). For DS-GNN, in order
to guarantee at least the expressive power of the basic graph encoder used, one can add the original
graph G to SπG for any policy π, obtaining the augmented version π̂. for example, ÊGO is a new
policy that outputs for each graph the standard EGO policy described above and the original graph.

Stochastic sampling. For graphs of larger size, enlisting the entire bag of subgraphs for some poli-
cies can prove to be too expensive. To counteract this, we suggest employing a stochastic subgraph
sub-sampling scheme which, in every training epoch, selects a small subset of subgraphs S

π

G ⊂ SπG
independently and uniformly at random. In practice, we use |SπG|/|SπG| ∈ {0.05, 0.2, 0.5}. Besides
enabling running on larger graphs, sub-sampling also allows to increase the batch size, resulting in a
faster runtime per epoch. During inference, we combine ` such subsets of subgraphs (we use ` = 5)
of subgraphs and a majority voting scheme to make predictions. While the resulting network is no
longer invariant, we show that this efficient variant of our method increases the expressive power of
the base encoder and performs well empirically.

3The wreath product models a setup in which the subgraphs are not aligned, see Maron et al. (2020); Wang
et al. (2020) for further discussion.

4For all policies, node removal is implemented by removing all the edges to the node, so that all the sub-
graphs are kept aligned and have n nodes.

5

2.3 RELATED WORK

Broadly speaking, the efforts in enhancing the expressive power of GNNs can be clustered along
three main directions: (1) Aligning to the k-WL hierarchy (Morris et al., 2019; 2020b; Maron et al.,
2019b;a); (2) Augmenting node features with exogenous identifiers (Sato et al., 2021; Dasoulas
et al., 2020; Abboud et al., 2020); (3) Leveraging on structural information that cannot provably be
captured by the WL test (Bouritsas et al., 2020; Thiede et al., 2021; de Haan et al., 2020; Bodnar
et al., 2021b;a). Our approach falls into the third category. It describes an architecture that uncov-
ers discriminative structural information within subgraphs of the original graph, while preserving
equivariance – typically lacking in (2) – and locality and sparsity of computation – generally absent
in (1). Prominent works in category (3) count or list substructures from fixed, predefined banks.
This preprocessing step has an intractable worst-case complexity and the choice of substructures is
generally task dependent. In contrast, as we show in Section 3, our framework is provably expressive
with scalable and non-domain specific policies. Lastly, ESAN can be combined with these related
methods, as they can parameterize the Esubgraphs module whenever the application domain suggests
so. We refer readers to Appendix B for a more detailed comparison of our work to relevant previous
work, and to Appendix G for an in-depth analysis of its computational complexity.

3 THEORETICAL ANALYSIS

In this section, we study the expressive power of our architecture by its ability to provably separate
non-isomorphic graphs. We start by introducing WL analogues for ESAN and then study how differ-
ent design choices affect the expressive power of our architectures. We assume that sum aggregation
is used for node features in DSS (Equation (1)) throughout this section.

3.1 A WL ANALOGUE FOR ESAN

We introduce two color-refinement procedures inspired by the WL isomorphism test (Weisfeiler &
Leman, 1968). These variants, which we refer to as DSS-WL and DS-WL variants, are inspired by
DSS-GNN and DS-GNN with a 1-WL equivalent base graph encoder (e.g., an MPNN), accordingly.
The goal is to formalize our intuition that graphs may be more easily separated by properly encoding
(a subset of) their contained subgraphs. Our variants are designed in a way to extract and leverage
this discriminative source of information. Details and proofs are provided in Appendix E.

(Init.) Inputs to the DSS-WL test are two input graphs G1, G2 and a subgraph selection policy π.
The algorithm generates the subgraph bags over the input graph by applying π. If initial colors are
provided, each node in each subgraph is assigned its original label in the original graph. Otherwise,
an initial, constant color is assigned to each node in each subgraph, independent of the bag.

(Refinement) On subgraph S, the color of node v is refined according to the rule: ct+1
v,S ←

HASH(ctv,S , N
t
v,S , C

t
v,M

t
v). Here, N t

v,S denotes the multiset of colors in v’s neighborhood over
subgraph S; Ctv represents the multiset of v’s colors across subgraphs; M t

v is the multiset of these
last ones (cross-subgraph aggregated colors) over v’s original neighborhood.

(Termination) At any step, each subgraph S is associated with color cS , representing the multiset
of node colors therein. Input graphs are described by the multisets of subgraph colors in the corre-
sponding bag. The algorithm terminates as soon as the graph representations diverge, deeming the
inputs non-isomorphic. The test is inconclusive if the two graphs are assigned the same representa-
tions at convergence, i.e., when the color refinement procedure converges on each subgraph.

DS-WL is obtained as a special setting of DSS-WL whereby the refinement rule neglects inputs Ctv
and M t

v . These inputs account for information sharing across subgraphs, and by disabling them, the
procedure runs the standard WL on each subgraph independently. We note that since DS-WL is a
special instantiation of DSS-WL, we expect the latter to be as powerful as the former; we formally
prove this in Appendix E. Finally, both DSS- and DS-WL variants reduce to trivial equivalents of
the standard WL test with policy π : G 7→ {G}.

3.2 WL ANALOGUES AND EXPRESSIVE POWER

Our first result confirms our intuition on the discriminative information contained in subgraphs:

6

Theorem 1 (DS(S)-WL strictly more powerful than 1-WL). There exist selection policies such that
DS(S)-WL is strictly more powerful than 1-WL in distinguishing between non-isomorphic graphs.

The idea is that it is possible to find policies5 such that (i) our variants refine WL, i.e. any graph
pair distinguished by WL is also distinguished by our variants, and (ii) there exist pairs of graphs
indistinguishable by WL but separated by our variants. These exemplary pairs include graphs from
a specific family, i.e. Circulant Skip Link (CSL) graphs (Murphy et al., 2019; Dwivedi et al., 2020).
We show that DS-WL and DSS-WL can distinguish pairs of these graphs:
Lemma 1. CSL(n, 2) can be distinguished from any CSL(n, k) with k ∈ [3, n/2 − 1] by DS-WL
and DSS-WL with either the ND, EGO, or EGO+ policy.

It is possible to also find exemplary pairs for the ED policy: one is included is Figure 1, while another
is found in Appendix E. Further examples to the expressive power attainable with our framework
are reported in the next subsection. Next, the following result guarantees that the expressive power
of our variants is attainable by our proposed architectures.
Theorem 2 (DS(S)-GNN at least as powerful as DS(S)-WL; DS-GNN at most as powerful as
DS-WL). Let F be any family of bounded-sized graphs endowed with node labels from a finite set.
There exist selection policies such that, for any two graphsG1, G2 inF , distinguished by DS(S)-WL,
there is a DS(S)-GNN model in the form of Equation (2) assigning G1, G2 distinct representations.
Also, DS-GNN with MPNN base graph encoder is at most as powerful as DS-WL.

In particular, this theorem applies to policies such that each edge in the original graph appears at
least once in the bag. This is the case of the policies in Section 2.2 and their augmented versions.
The theorem states that, under the aforementioned assumptions, DSS-GNNs (DS-GNNs) are at least
as powerful as the DSS-WL (DS-WL) test, and transitively, in view of Theorem 1, that there exist
policies making ESAN more powerful than the WL test. This result is important, because it gives
provable guarantees on the representation power of our architecture w.r.t. standard MPNNs:
Corollary 1 (DS(S)-GNN is strictly more powerful than MPNNs). There exists subgraph selection
policies such that DSS-GNN and DS-GNN architectures are strictly more powerful than standard
MPNN models in distinguishing non-isomorphic graphs.

The corollary is an immediate consequence of Theorem 1, Theorem 2 and the results in Xu et al.
(2019); Morris et al. (2019), according to which MPNNs are at most as powerful as the WL test.

3.3 THEORETICAL EXPRESSIVENESS OF DESIGN CHOICES

Our general ESAN architecture has several important design choices: choice of DSS-GNN or DS-
GNN for the architecture, choice of graph encoder, and choice of subgraph selection policy. Thus,
here we study how these design choices affect expressiveness of our architecture.

DSS vs. DS matters. To continue the discussion of the last section, we show that DSS-GNN is at
least as powerful as DS-GNN, and is in fact strictly stronger than DS-GNN for a specific policy.
Proposition 1. DSS-GNN is at least as powerful as DS-GNN for all policies. Furthermore, there
are policies where DSS-GNN is strictly more powerful than DS-GNN.

Base graph encoder choice matters. Several graph networks with increased expressive power over
1-WL have been proposed (Sato, 2020; Maron et al., 2019a). Thus, one may desire to use a more
expressive graph network than MPNNs. The following proposition analyzes the expressivity of a
generalization of DS-GNN to use a 3-WL base encoder; details are given in the proof in Appendix F.

Proposition 2. Let the subgraph policy be depth-1 ÊGO or ÊGO+. Then: (1) DS-GNN with a 3-
WL base graph encoder is strictly more powerful than 3-WL. (2) DS-GNN with a 3-WL base graph
encoder is strictly more powerful than DS-GNN with a 1-WL base graph encoder.

Part (1) shows that our DS-GNN architecture improves the expressiveness of 3-WL graph encoders
over 3-WL itself, so expressiveness gains from our ESAN architecture are not limited to the 1-WL
base graph encoder case. Part (2) shows that our architecture can gain in expressive power when
increasing the expressive power of the graph encoder.

5In the case of DS-WL it is required that the original graph is included in the bag.

7

Table 1: TUDatasets. The top three are highlighted by First, Second, Third. Gray background
indicates that ESAN outperforms the base encoder.

Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M

DCNN (Atwood & Towsley, 2016) N/A N/A 61.3±1.6 56.6±1.0 N/A 49.1±1.4 33.5±1.4
DGCNN (Zhang et al., 2018) 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 N/A 70.0±0.9 47.8±0.9
IGN (Maron et al., 2019b) 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.8±1.5 72.0±5.5 48.7±3.4
PPGNs (Maron et al., 2019a) 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 82.2±1.4 73.0±5.8 50.5±3.6
Natural GN (de Haan et al., 2020) 89.4±1.6 66.8±1.7 71.7±1.0 82.4±1.3 N/A 73.5±2.0 51.3±1.5
GSN (Bouritsas et al., 2020) 92.2±7.5 68.2±7.2 76.6±5.0 83.5±2.0 N/A 77.8±3.3 54.3±3.3
SIN (Bodnar et al., 2021b) N/A N/A 76.4±3.3 82.7±2.1 N/A 75.6±3.2 52.4±2.9
CIN (Bodnar et al., 2021a) 92.7±6.1 68.2±5.6 77.0±4.3 83.6±1.4 84.0±1.6 75.6±3.7 52.7±3.1

GIN (Xu et al., 2019) 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 82.2±1.6 75.1±5.1 52.3±2.8

GIN + ID-GNN (You et al., 2021) 90.4±5.4 67.2±4.3 75.4±2.7 82.6±1.6 82.1±1.5 76.0±2.7 52.7±4.2

DropEdge (Rong et al. (2019)) 91.0±5.7 64.5±2.6 73.5±4.5 82.0±2.6 82.2±1.4 76.5± 3.3 52.8± 2.8

DS-GNN (GIN) (ED) 89.9±3.7 66.0±7.2 76.8±4.6 83.3±2.5 83.0±1.7 76.1±2.6 52.9±2.4
DS-GNN (GIN) (ND) 89.4±4.8 66.3±7.0 77.1±4.6 83.8±2.4 82.4±1.3 75.4±2.9 52.7±2.0
DS-GNN (GIN) (EGO) 89.9±6.5 68.6±5.8 76.7±5.8 81.4±0.7 79.5±1.0 76.1±2.8 52.6±2.8
DS-GNN (GIN) (EGO+) 91.0±4.8 68.7±7.0 76.7±4.4 82.0±1.4 80.3±0.9 77.1±2.6 53.2±2.8

DSS-GNN (GIN) (ED) 91.0±4.8 66.6±7.3 75.8±4.5 83.4±2.5 82.8±0.9 76.8±4.3 53.5±3.4
DSS-GNN (GIN) (ND) 91.0±3.5 66.3±5.9 76.1±3.4 83.6±1.5 83.1±0.8 76.1±2.9 53.3±1.9
DSS-GNN (GIN) (EGO) 91.0±4.7 68.2±5.8 76.7±4.1 83.6±1.8 82.5±1.6 76.5±2.8 53.3±3.1
DSS-GNN (GIN) (EGO+) 91.1±7.0 69.2±6.5 75.9±4.3 83.7±1.8 82.8±1.2 77.1±3.0 53.2±2.4

GraphConv (Morris et al., 2019) 90.5±4.6 64.9±10.4 73.9±6.1 82.4±2.7 81.7±1.0 76.1±3.9 53.1±2.9

GraphConv + ID-GNN (You et al., 2021) 89.4±4.1 65.4±7.1 71.9±4.6 83.4±2.4 82.9±1.2 76.1±2.5 53.7±3.3

RNI (Abboud et al., 2020) 91.0±4.9 64.3±6.1 73.3±3.3 82.1±1.7 81.7±1.0 75.5±3.3 53.1±1.9

DS-GNN (GRAPHCONV) (ED) 90.4±4.1 65.7±5.2 76.3±5.2 82.7±1.9 82.4±1.5 75.3±2.3 53.5±2.3
DS-GNN (GRAPHCONV) (ND) 88.3±5.1 66.6±7.8 76.8±3.9 82.9±2.5 82.7±1.3 75.7±2.9 53.5±2.1
DS-GNN (GRAPHCONV) (EGO) 89.4±5.4 66.6±6.5 76.7±5.4 81.3±1.9 79.6±2.0 76.6±4.0 53.1±1.5
DS-GNN (GRAPHCONV) (EGO+) 90.4±5.8 67.4±4.7 76.8±4.3 82.8±2.5 80.6±1.3 76.0±1.6 53.3±2.4

DSS-GNN (GRAPHCONV) (ED) 91.0±5.8 66.3±7.7 75.7±3.6 83.1±2.3 82.9±1.0 75.8±2.8 53.7±2.8
DSS-GNN (GRAPHCONV) (ND) 90.6±5.2 65.4±5.8 76.2±5.0 83.7±1.7 82.4±1.3 75.1±3.2 53.3±2.6
DSS-GNN (GRAPHCONV) (EGO) 91.5±4.9 68.0±6.1 76.6±4.6 83.5±1.1 82.5±1.6 76.3±3.6 53.1±2.8
DSS-GNN (GRAPHCONV) (EGO+) 92.0±5.0 67.7±5.7 77.0±5.4 83.4±1.8 82.6±1.5 76.6±2.8 53.6±2.8

Subgraph selection policy matters. Besides complexity (discussed in Appendix G), different poli-
cies also result in different expressive power of our model. We analyze the case of 1-WL (MPNN)
graph encoder for different choices of policy, restricting our attention to strongly regular (SR)
graphs. These graphs are parameterized by 4 parameters (n, k, λ, µ), where n is the number of
nodes, k is the degree of each node, λ is the number of common neighbors for any adjacent nodes,
and µ is the number of common neighbors for any non-adjacent nodes. SR graphs are an interesting
‘corner case’ often used for studying GNN expressivity, as any SR graphs of the same parameters
cannot be distinguished by 1-WL or 3-WL (Arvind et al., 2020; Bodnar et al., 2021b;a).

We show that our framework with the ND and depth-n EGO+ policies is able to distinguish any SR
graphs of different parameters. However, just like 3-WL, we cannot distinguish SR graphs of the
same parameters. On the other hand, the ED policy can distinguish certain pairs of non-isomorphic
SR graphs of the same parameters, while still being able to distinguish all SR graphs of different
parameters. We now formalize the above statements in Proposition 3.

Proposition 3. Consider DS-GNN on SR graphs: (1) ND, EGO+, ED can distinguish any SR graphs
of different parameters, (2) ND, EGO+ cannot distinguish any SR graphs of the same parameters,
(3) ED can distinguish some SR graphs of the same parameters. The EGO+ policies are at depth-n.
Thus, for distinguishing SR graphs, ND and depth-n EGO+ are no stronger than 3-WL, while ED is
strictly stronger than 3-WL.

4 EXPERIMENTS

We perform an extensive set of experiments to answer five main questions: (1) Is our approach
more expressive than the base graph encoders in practice? (2) Can our approach achieve better
performance on real benchmarks? (3) How do the different subgraph selection policies compare?
(4) Can our efficient stochastic variant offer the same benefits as the full approach? (5) Are there
any empirical advantages to DSS-GNN versus DS-GNN?.

Datasets. We conduct experiments on eleven graph classification datasets originating from three
data repositories: (1) RNI (measuring expressive power) (Abboud et al., 2020), (2) TUD repository
(social network analysis and bioinformatics) (Morris et al., 2020a) and (3) Open Graph Benchmark

8

(molecules) (Hu et al., 2020). These datasets are diverse on a number of important levels, including
the number of graphs (188-41,127), existence of input node features, and sparsity.

Methods in comparison. We compare our approach to a wide range of methods, including max-
imally expressive MPNNs (Xu et al., 2019; Morris et al., 2019). We particularly focus on more
expressive GNNs (Maron et al., 2019a; de Haan et al., 2020; Bouritsas et al., 2020; Abboud et al.,
2020; Bodnar et al., 2021b; Abboud et al., 2020) and also compare to DropEdge (Rong et al., 2019)
and ID-GNN (You et al., 2021), that share some similarity with our ED and EGO policies.6

Implementation and experimental details. We experimented with both DSS-GNN and DS-GNN
on all the datasets and used popular MPNN-type GNNs as base encoders: GIN (Xu et al., 2019),
GraphConv (Morris et al., 2019), and GCN (Kipf & Welling, 2017) using all four selection policies
(ND, ED, EGO, and EGO+). We use max for aggregating the adjacency matrices for DSS-GNN.
More implementation details can be found in Appendix C.

EXP and CEXP datasets. We first tested the benefits of our framework on the synthetic EXP and
CEXP datasets (Abboud et al., 2020), specifically designed so that any 1-WL GNN cannot do better
than random guess (50% accuracy in EXP, 75% in CEXP). We report the mean and standard devi-
ation from 10-fold cross-validation in Table 5 in Appendix D. While GIN and GraphConv perform
no better than a random guess, DS- and DSS-GNN perfectly solve the task when using these layers
as base graph encoders, with all the policies working equally well. Table 7 in Appendix D shows
the performance of our stochastic variant. In all cases our approach yields almost perfect accuracy,
where DSS-GNN works better than DS-GNN when sampling only 5% of the subgraphs.

TUDatasets. We experimented with seven popular datasets from the TUD repository. We followed
the widely-used hyperparameter selection and experimental procedure proposed by Xu et al. (2019).
Results are reported in Table 1. We observe that: (1) ESAN variants achieve excellent results with
respect to SoTA methods: they score first, second and third in, respectively, two, four and one
dataset out of seven; (2) ESAN consistently improves over the base encoder, up to almost 5% (DSS-
GNN: 51/56 cases, DS-GNN: 42/56 cases, see gray background in table); (3) ESAN consistently
outperforms other methods aimed at increasing the expressive power of GNNs, such as ID-GNN
(You et al., 2021) and RNI (Abboud et al., 2020). Particularly successful configurations are: (i) DSS-
GNN (EGO+) + GraphConv/GIN; (ii) DS-GNN (ND) + GIN. Table 6 in Appendix D compares the
performance of our stochastic sampling variant with the base encoder (GIN) and the full approach.
Our stochastic version provides a strong and efficient alternative, generally outperforming the base
encoder. Intriguingly, stochastic sampling occasionally outperforms even the full approach.

Table 2: Test results for OGB datasets. Gray back-
ground indicates that ESAN outperforms the base
encoder.

OGBG-MOLHIV OGBG-MOLTOX21
Method ROC-AUC (%) ROC-AUC (%)

GCN (Kipf & Welling, 2017) 76.06±0.97 75.29±0.69

DS-GNN (GCN) (ED) 74.70±1.94 74.86±0.92
DS-GNN (GCN) (ND) 74.40±2.48 75.79±0.30
DS-GNN (GCN) (EGO) 74.00±2.38 75.41±0.72
DS-GNN (GCN) (EGO+) 73.84±2.58 74.74±0.96

DSS-GNN (GCN) (ED) 76.00±1.41 75.34±0.69
DSS-GNN (GCN) (ND) 75.17±1.35 75.56±0.59
DSS-GNN (GCN) (EGO) 76.16±1.02 76.14±0.53
DSS-GNN (GCN) (EGO+) 76.50±1.38 76.29±0.78

GIN (Xu et al., 2019) 75.58±1.40 74.91±0.51

DS-GNN (GIN) (ED) 76.43±2.12 75.12±0.50
DS-GNN (GIN) (ND) 76.19±0.96 75.34±1.21
DS-GNN (GIN) (EGO) 78.00±1.42 76.22±0.62
DS-GNN (GIN) (EGO+) 77.40±2.19 76.39±1.18

DSS-GNN (GIN) (ED) 77.03±1.81 76.71±0.67
DSS-GNN (GIN) (ND) 76.63±1.52 77.21±0.70
DSS-GNN (GIN) (EGO) 77.19±1.27 77.45±0.41
DSS-GNN (GIN) (EGO+) 76.78±1.66 77.95±0.40

OGB. Finally, we tested the ESAN framework
on the OGB-MOLHIV and OGB-MOLTOX21
datasets from Hu et al. (2020) using the scaffold
splits. Table 2 compares the results of all ESAN
variants to the the performance of the base
variants (GIN and GCN). It can be seen that
when using GIN, all ESAN variants improve
the base encoder accuracy by up to 2.5% on
OGB-MOLHIV and 3.4% on OGB-MOLTOX21.
In addition, DSS-GNN performs better that DS-
GNN with GCN. Finally, DSS-GNN improves
the base encoder in 14/16 cases, whereas a DS-
GNN improves it in 10/16 cases.

Timing. Detailed timing results are provided
in Appendix D. Roughly speaking, on NCI1,
DS-GNN and DSS-GNN take respectively 2x
and 3x the time of the corresponding base graph
encoder for a single training epoch. The sam-
pling approach (20%) reduces these times by
10-15%. Noticeably, the gap decreases when
considering the entire training, due to additional overheads.

6We implemented the fast version of ID-GNN with 10 dimensional augmented node features.

9

5 CONCLUSION AND FUTURE DIRECTIONS
We have presented ESAN, a novel framework for learning graph-structured data, based on decom-
posing a graph into a set of subgraphs and processing this set in a manner respecting its symmetry
structure. We have shown that ESAN increases the expressive power of several existing graph learn-
ing architectures and performs well on multiple graph classification benchmarks. The main limita-
tion of our approach is its increased computational complexity with respect to standard MPNNs. We
have proposed a more efficient stochastic version to mitigate this limitation and demonstrated that
it performs well in practice. In follow-up research, we plan to investigate the following directions:
(1) Is it possible to learn useful subgraph selection policies? (2) Can higher order structures on
subgraphs (e.g., a graph of subgraphs) be leveraged for better expressive power? (3) A theoretical
analysis of the stochastic version and of different policies/aggregation functions.

ACKNOWLEDGEMENTS

We would like to thank all those people involved in the 2021 London Geometry and Machine Learn-
ing Summer School (LOGML), where this research project started. In particular, we would like to
express our gratitude to the members of the organizing committee: Mehdi Bahri, Guadalupe Gon-
zalez, Tim King, Dr Momchil Konstantinov and Daniel Platt. We would also like to thank Stefanie
Jegelka, Cristian Bodnar, and Yusu Wang for helpful discussions. MB is supported in part by ERC
Consolidator grant no 724228 (LEMAN).

REFERENCES

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. arXiv preprint arXiv:2010.01179,
2020.

Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman
invariance: subgraph counts and related graph properties. Journal of Computer and System Sci-
ences, 113:42–59, 2020.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In NIPS, pp. 1993–2001,
2016.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural
networks. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=lxHgXYN4bwl.

László Babai, Xi Chen, Xiaorui Sun, Shang-Hua Teng, and John Wilmes. Faster canonical forms
for strongly regular graphs. In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, pp. 157–166. IEEE, 2013.

Muhammet Balcilar, Pierre Heroux, Benoit Gauzere, Pascal Vasseur, Sebastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In Marina Meila and
Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 599–608. PMLR, 18–24 Jul 2021.
URL https://proceedings.mlr.press/v139/balcilar21a.html.

Igor I Baskin, Vladimir A Palyulin, and Nikolai S Zefirov. A neural device for searching direct
correlations between structures and properties of chemical compounds. J. Chemical Information
and Computer Sciences, 37(4):715–721, 1997.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.
wandb.com/. Software available from wandb.com.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montúfar, and
Michael Bronstein. Weisfeiler and lehman go cellular: CW networks. In Advances in Neural
Information Processing Systems, volume 34, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montúfar, Pietro Lio, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.
ICML, 2021b.

10

https://openreview.net/forum?id=lxHgXYN4bwl
https://openreview.net/forum?id=lxHgXYN4bwl
https://proceedings.mlr.press/v139/balcilar21a.html
https://www.wandb.com/
https://www.wandb.com/

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improv-
ing graph neural network expressivity via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252, 2020.

Giorgos Bouritsas, Andreas Loukas, Nikolaos Karalias, and Michael M Bronstein. Partition and
code: learning how to compress graphs. In Advances in Neural Information Processing Systems,
volume 34, 2021.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv:2104.13478, 2021.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Peter J Cameron. Strongly regular graphs. Topics in Algebraic Graph Theory, 102:203–221, 2004.

Lei Chen, Zhengdao Chen, and Joan Bruna. Learning the relevant substructures for tasks on graph
data. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8528–8532, 2021. doi: 10.1109/ICASSP39728.2021.9414377.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. arXiv preprint arXiv:1905.12560,
2019.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 2020.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257–266, 2019.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International confer-
ence on machine learning, pp. 2990–2999. PMLR, 2016.

George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring graph neural
networks for node disambiguation. In Christian Bessiere (ed.), Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 2126–2132. International
Joint Conferences on Artificial Intelligence Organization, 7 2020. doi: 10.24963/ijcai.2020/294.
URL https://doi.org/10.24963/ijcai.2020/294. Main track.

Pim de Haan, Taco Cohen, and Max Welling. Natural graph networks. In NeurIPS, 2020.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning so
(3) equivariant representations with spherical cnns. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 52–68, 2018.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The World Wide Web Conference, pp. 417–426, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning theory and kernel machines, pp. 129–143. Springer, 2003.

11

https://doi.org/10.24963/ijcai.2020/294

Floris Geerts. The expressive power of kth-order invariant graph networks, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Christoph Goller and Andreas Kuchler. Learning task-dependent distributed representations by
backpropagation through structure. In ICNN, 1996.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp. 729–734. IEEE, 2005.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 22118–22133. Curran Asso-
ciates, Inc., 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In ICML, 2018.

Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Advances in Neural Information Processing Systems, 32:7092–7101, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Dmitry B Kireev. Chemnet: a novel neural network based method for graph/property mapping. J.
Chemical Information and Computer Sciences, 35(2):175–180, 1995.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups. In International Conference on Machine Learning, pp.
2747–2755. PMLR, 2018.

Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu Trivedi. Covariant
compositional networks for learning graphs. arXiv preprint arXiv:1801.02144, 2018.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In ICLR, 2020.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In NeurIPS, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In ICLR, 2019b.

Haggai Maron, Or Litany, Gal Chechik, and Ethan Fetaya. On learning sets of symmetric elements.
In International Conference on Machine Learning, pp. 6734–6744. PMLR, 2020.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609,
2019.

12

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. In ICML
Graph Representation Learning and Beyond (GRL+) Workhop, 2020a.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 21824–
21840. Curran Associates, Inc., 2020b.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In International Conference on Machine Learning, pp. 4663–4673.
PMLR, 2019.

Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation ker-
nels: efficient graph kernels from propagated information. Machine Learning, 102(2):209–245,
2016.

Omri Puny, Heli Ben-Hamu, and Yaron Lipman. Global attention improves graph networks gener-
alization. arXiv preprint arXiv:2006.07846, 2020.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Gaurav Rattan and Tim Seppelt. Weisfeiler–leman, graph spectra, and random walks. arXiv preprint
arXiv:2103.02972, 2021.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Deep learning with sets and point
clouds. arXiv preprint arXiv:1611.04500, 2016.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through parameter-
sharing. In International Conference on Machine Learning, pp. 2892–2901. PMLR, 2017.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2019.

Dylan Sandfelder, Priyesh Vijayan, and William L Hamilton. Ego-gnns: Exploiting ego structures
in graph neural networks. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 8523–8527. IEEE, 2021.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM),
pp. 333–341. SIAM, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Ef-
ficient graphlet kernels for large graph comparison. In AISTAT, pp. 488–495, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. JMLR, 12(Sep):2539–2561, 2011.

Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. Machine Learning: Science and Technology, 2(2):021001, 2020.

Alessandro Sperduti. Encoding labeled graphs by labeling RAAM. In NIPS, 1994.

Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classification of
structures. IEEE Trans. Neural Networks, 8(3):714–735, 1997.

13

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node em-
beddings and structural graph representations. In International Conference on Learning Repre-
sentations, 2020. URL https://openreview.net/forum?id=SJxzFySKwH.

Behrooz Tahmasebi and Stefanie Jegelka. Counting substructures with higher-order graph neural
networks: Possibility and impossibility results. arXiv preprint arXiv:2012.03174, 2020.

Erik Henning Thiede, Wenda Zhou, and Risi Kondor. Autobahn: Automorphism-based graph neural
nets. In Advances in Neural Information Processing Systems, volume 34, 2021.

Clément Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
neural networks with structural message-passing. In NeurIPS, 2020.

Renhao Wang, Marjan Albooyeh, and Siamak Ravanbakhsh. Equivariant networks for hierarchical
structures. In NeurIPS, 2020.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462. PMLR, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 10737–10745, 2021.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful memorizers: a tight
analysis of memorization capacity. In NeurIPS, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in Neural Information Processing Systems, 30, 2017.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI, 2018.

14

https://openreview.net/forum?id=SJxzFySKwH
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

A BACKGROUND: LEARNING ON SETS AND GRAPHS

In this section we present a brief introduction to GNNs, equivariance and set learning.

Graph neural networks. GNNs are a type of neural networks that process graphs as input. Their
roots can be traced back to the field of computational chemistry Kireev (1995); Baskin et al. (1997)
and the pioneering works of Sperduti (1994); Goller & Kuchler (1996); Sperduti & Starita (1997);
Gori et al. (2005); Scarselli et al. (2008). In recent years, GNNs have become a major research
direction and are used in many application fields such as social network analysis (Fan et al., 2019),
molecular biology (Jin et al., 2018), physics (Shlomi et al., 2020) and computer vision (Johnson
et al., 2018). Over the years, several ideas have served as inspiration for GNNs, including spectral
graph theory (Bruna et al., 2013; Bronstein et al., 2017) and equivariance (Maron et al., 2019b;
Bronstein et al., 2021). Message-passing neural networks (MPNNs) (Gilmer et al., 2017; Morris
et al., 2019; Xu et al., 2019) have been the most popular approach to this problem. These models are
inspired by convolutional networks on images because of their locality and stationary characteristics.
These networks are composed of several layers, which update node (and edge, if available) features
based on the local graph connectivity. There are several ways to define a message passing layer. For
example, the following is a popular formulation (Morris et al., 2019):

xtv = W t
1x

t−1
v +W t

2

∑
u∼v

xt−1
u + bt (3)

Here, xtv ∈ Rdt is the feature associated with a node v after after applying the t-th layer, Wi ∈
Rdt×dt−1 , bt ∈ Rdt are the learnable parameters, and u ∼ v means that the nodes are adjacent.

Expressive power of GNNs. There is a particular interest in the expressive power of GNNs (Sato,
2020). The seminal works of Morris et al. (2019); Xu et al. (2019) analyzed the expressive power
of MPNNs and showed that their ability to distinguish graphs is the same as the first version of the
WL graph isomorphism test introduced by Weisfeiler & Leman (1968). Importantly, this test cannot
distinguish rather simple pairs of graphs (see Figure 1). In general, WL tests are a polynomial time
hierarchy of graph isomorphism tests: for k > k′, k-WL is strictly more powerful than k′-WL (Cai
et al., 1992), but requires more time and space complexity which is exponential in k. These works
inspired a plethora of novel GNNs with improved expressive power (Maron et al., 2019a; Bouritsas
et al., 2020; Bodnar et al., 2021b;a; Vignac et al., 2020; Murphy et al., 2019; Chen et al., 2019). See
Appendix B for a detailed discussion.

Invariance and equivariance The notion of symmetry, expressed through the action of a group on
signals defined on some domain, is a key concept of ‘geometric deep learning’, allowing to derive
from first principles many modern deep representation learning architectures (Bronstein et al., 2021).
Let H be a group acting on vector spaces V,W . We say that a function f : V → R is H-invariant
if f(h · x) = f(x) for all x ∈ V, h ∈ H . Similarly, a function f : V → W is equivariant if
the function commutes with the group action, namely f(h · x) = h · f(x) for all x ∈ V, h ∈ H .
Constructing invariant and equivariant learning models has become a central design paradigm in
machine learning, see e.g., Cohen & Welling (2016); Ravanbakhsh et al. (2017); Kondor & Trivedi
(2018); Esteves et al. (2018). In particular, graphs typically do not have a canonical ordering of
nodes, forcing GNN layers to be permutation-equivariant.

Deep learning on Sets. Sets can be considered as a special case of graphs with no edges, and
learning on set-structured data has recently become an important topic with applications such as
computer graphics and vision dealing with 3D point clouds (Qi et al., 2017). A set of n items can
be encoded in an n × d feature matrix X , and since the order of rows is arbitrary, one is interested
in functions that are invariant or equivariant under element permutations. The works of Zaheer et al.
(2017); Ravanbakhsh et al. (2016); Qi et al. (2017) were the first to suggest universal architectures
for set data. They are based on element-wise functions and global pooling operations. For example,
a Deep Sets layer takes the form

xti = W t
1x

t−1
i +W t

2

n∑
j=1

xt−1
j + bt (4)

Here, xti is the feature of the i-th set element after applying layer t. Alternatively, this layer can be
described as a message passing layer on a complete graph with Equation 3.

15

Recently, Maron et al. (2020) suggested the Deep Sets for Symmetric elements framework (DSS),
a generalization of Deep Sets to a learning setup in which each element has its own symmetry
structure, represented by another group G acting on the d-dimensional vectors in the input (the
rows of X), such as translations in the case of images. The paper characterizes the space of linear
equivariant layers which boil down to replacing the unconstrained fully-connected matrices Wi in
the equation above with corresponding linear equivariant layers, like convolutions in the case of
images. We observe that when W2 = 0, we obtain a simple Siamese network. Importantly, the
paper shows that when W2 6= 0, the network exhibits a greater expressive power. Intuitively this is
due its enhanced information-sharing abilities within the set.

B RELATION TO PREVIOUS WORKS

Processing subgraphs for graph learning. Our approach is related to multiple techniques in graph
learning. Introduced for semi-supervised node-classification tasks, DropEdge (Rong et al., 2019)
can be considered as a stochastic version of the ED policy that processes one single edge-deleted
subgraph at a time. Ego-GNNs (Sandfelder et al., 2021) resemble our EGO policy, as messages are
passed within each node’s ego-net, and are aggregated from each ego-net that a node is contained
in. ID-GNNs (You et al., 2021) resemble the EGO+ policy, the difference being the way in which
the root node is identified and the way the information between the ego-nets is combined. RNP-
GNNs (Tahmasebi & Jegelka, 2020) learn functions over recursively-defined node-deleted ego-nets
with augmented features, which allows for high expressive power for counting substructures and
computing other local functions. Also, Hamilton et al. (2017) introduce a minibatching procedure
that samples neighborhoods for each GNN layer — in large part for the sake of efficiently processing
large graphs. Other works like Cluster-GCN (Chiang et al., 2019) and GraphSAINT (Zeng et al.,
2020) have followed by developing methods for sampling whole subgraphs at a time, and then
processing these subgraphs with a GNN.

Provably expressive GNNs. The inability of WL to disambiguate even simple graph pairs has re-
cently sparked particular interest in provably expressive GNNs. A fruitful streamline of works (Mor-
ris et al., 2019; 2020b; Kondor et al., 2018; Maron et al., 2019b;a; Keriven & Peyré, 2019; Azizian
& Lelarge, 2021) has proposed architectures aligning to the k-WL hierarchy; the expressiveness of
these models is well characterized in terms of this last, but these guarantees come at the cost of a
generally intractable computational cost for k ≥ 3. Additionally, most of these architectures lack an
important feature contributing to the recent success of GNNs: locality of computation. In an effort to
maintain the inductive bias of locality, recent works have proposed to provably enhance the expres-
siveness of GNNs by augmenting node features with random identifiers (Sato et al., 2021; Loukas,
2020; Abboud et al., 2020; Puny et al., 2020) or auxiliary colourings (Dasoulas et al., 2020). Al-
though of scalable and immediate implementation, these approaches may not preserve equivariance
w.r.t. node permutations and random features in particular have been observed to under-perform in
generalising outside of training data.

A family of works focused on building local and equivariant provably powerful architectures and,
for this reason, is especially related to our approach. Of particular relevance are works which argued
for the use of (higher-order) structural information. Structural node identifiers obtained as sub-
graph isomorphism counting were introduced in Bouritsas et al. (2020). Alternatively, Srinivasan
& Ribeiro (2020); de Haan et al. (2020); Thiede et al. (2021) argue for the use the automorphism
group of edges and substructures to obtain more expressive representations. These features cannot
be computed by standard MPNNs (Chen et al., 2020) for substructures different than trees and they
can provably enhance the expressiveness of standard MPNNs while retaining their local inductive
bias. Bodnar et al. (2021b;a) introduced the idea of lifting graphs to more general topological spaces
such as simplicial and cellular complexes. Higher-order structures are first-class objects thereon and
message passing is directly performed on them. In general, listing (or counting) substructures has an
intractable worst-case complexity and the design of the substructure bank may be difficult in certain
cases. This makes these models of less obvious application outside of the molecular and social do-
main, where the importance of specific substructures is not well understood and their number may
rapidly grow.

Our framework, on the contrary, attains locality, equivariance and provable expressiveness with scal-
able and non-domain specific policies. Any of the ED, ND, and EGO(+) policies make our approach
strictly more powerful than standard MPNNs (see Section E), and the generation of the bags is com-

16

putationally tractable, independently of the graph distribution at hand (more in Section G). Either
way, we remark that the aforementioned works are compatible with our overall framework, and can
be employed to parameterize the Esubgraphs module in those cases where our approach may benefit
from provably powerful and domain-specific base graph encoders.

As a final note, we would like to point out the presence of two recent works which focused on the
problem of automatically extracting relevant graph substructures in an automated way. Bouritsas
et al. (2021) propose a model that can be trained to partition graphs into substructures for lossless
compression; Chen et al. (2021) show how the model introduced in Chen et al. (2020) can achieve
competitive results while retaining interpretability by the detection of the graph substructures em-
ployed by such model to make its decisions. These approaches may potentially be used to design
more advanced subgraph selection policies.

C IMPLEMENTATION DETAILS

We implemented our approach using the PyG framework (Fey & Lenssen, 2019) and ran the exper-
iments on NVIDIA DGX V100 stations. We performed hyper parameter tuning using the Weights
and Biases framework (Biewald, 2020) for all the methods, including the baselines.

Details of hyper parameter grids and architectures are discussed in the subsections below.

C.1 TUDATASETS

We considered the evaluation procedure proposed by Xu et al. (2019). Specifically, we conducted
10-fold cross validation and reported the validation performances at the epoch achieving the highest
averaged validation accuracy across all the folds. We used Adam optimizer with learning rate de-
cayed by a factor of 0.5 every 50 epochs. The training is stopped after 350 epochs. As for DS-GNN,
we implemented Rsubgraphs with summation over node features, while module Esets is parameterized
with a two-layer DeepSets with final mean readout; layers are in the form of Equation (4). In DSS-
GNN, we considered the mean aggregator for the feature matrix and used the adjacency matrix of
the original graph. We implemented Rsubgraphs by averaging node representations on each subgraph;
Esets is either a two-layer DeepSets in the form of Equation (4) with final mean readout, or a simple
averaging of subgraphs representations (the choice is driven by hyper parameter tuning). We con-
sidered two baseline models, namely GIN (Xu et al., 2019) and GraphConv (Morris et al., 2019) and
based our hyper parameter search on the same parameters of the corresponding baseline, as detailed
below.

GIN. We considered the same architecture as in Xu et al. (2019), with 4 GNN layers with all
MLPs having 1 hidden layer. We used the Jumping Knowledge scheme from Xu et al. (2018) and
employed batch normalization (Ioffe & Szegedy, 2015). As in Xu et al. (2019), we tuned the batch
size in {32, 128}, the embedding dimension of the MLPs in {16, 32} and the initial learning rate in
{0.01, 0.001}. We tuned the embedding dimension of the DeepSets layers of Esets in {32, 64}.

GraphConv. We considered the same architecture as in Morris et al. (2019), with 3 GNN layers
and embedding dimension of 64. We added batch normalization (Ioffe & Szegedy, 2015) after each
layer in all models, as we noticed a gain in performances. For a fair comparison, we tuned batch
size, learning rate and DeepSets hidden channels over the same grid employed for GIN.

Additional comparisons. We additionally implemented and compared our models to Drope-
dge (Rong et al., 2019), RNI (Abboud et al., 2020) and ID-GNN (You et al., 2021). For Drope-
dge, we used a drop rate of 20% to drop edges while training. For RNI, we considered Partial-RNI
where 50% of node features are randomized and the remaining are deterministically set to the initial
node features. For ID-GNN, we implemented the fast version with 10 dimensional augmented node
features, due to the good performances presented in the original paper.

C.2 OGB DATASETS

We used the evaluation procedure proposed in Hu et al. (2020). Specifically, we ran each experiment
with 10 different initialization seeds and we reported the mean performances (along with standard
deviation) corresponding to the best validation result. We used Adam optimizer and trained for 100

17

Table 3: TUDatasets. The top three are highlighted by First, Second, Third. Gray background
indicates that ESAN outperforms the base encoder.

Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M

RWK (Gärtner et al., 2003) 79.2±2.1 55.9±0.3 59.6±0.1 >3 days N/A N/A N/A
GK (k = 3) (Shervashidze et al., 2009) 81.4±1.7 55.7±0.5 71.4±0.3 62.5±0.3 62.4±0.3 N/A N/A
PK (Neumann et al., 2016) 76.0±2.7 59.5±2.4 73.7±0.7 82.5±0.5 N/A N/A N/A
WL kernel (Shervashidze et al., 2011) 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 N/A 73.8±3.9 50.9±3.8

DCNN (Atwood & Towsley, 2016) N/A N/A 61.3±1.6 56.6±1.0 N/A 49.1±1.4 33.5±1.4
DGCNN (Zhang et al., 2018) 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 N/A 70.0±0.9 47.8±0.9
IGN (Maron et al., 2019b) 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.8±1.5 72.0±5.5 48.7±3.4
PPGNs (Maron et al., 2019a) 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 82.2±1.4 73.0±5.8 50.5±3.6
Natural GN (de Haan et al., 2020) 89.4±1.6 66.8±1.7 71.7±1.0 82.4±1.3 N/A 73.5±2.0 51.3±1.5
GSN (Bouritsas et al., 2020) 92.2±7.5 68.2±7.2 76.6±5.0 83.5±2.0 N/A 77.8±3.3 54.3±3.3
SIN (Bodnar et al., 2021b) N/A N/A 76.4±3.3 82.7±2.1 N/A 75.6±3.2 52.4±2.9
CIN (Bodnar et al., 2021a) 92.7±6.1 68.2±5.6 77.0±4.3 83.6±1.4 84.0±1.6 75.6±3.7 52.7±3.1

GIN (Xu et al., 2019) 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 82.2±1.6 75.1±5.1 52.3±2.8

GIN + ID-GNN (You et al., 2021) 90.4±5.4 67.2±4.3 75.4±2.7 82.6±1.6 82.1±1.5 76.0±2.7 52.7±4.2

DropEdge (Rong et al. (2019)) 91.0±5.7 64.5±2.6 73.5±4.5 82.0±2.6 82.2±1.4 76.5± 3.3 52.8± 2.8

DS-GNN (GIN) (ED) 89.9±3.7 66.0±7.2 76.8±4.6 83.3±2.5 83.0±1.7 76.1±2.6 52.9±2.4
DS-GNN (GIN) (ND) 89.4±4.8 66.3±7.0 77.1±4.6 83.8±2.4 82.4±1.3 75.4±2.9 52.7±2.0
DS-GNN (GIN) (EGO) 89.9±6.5 68.6±5.8 76.7±5.8 81.4±0.7 79.5±1.0 76.1±2.8 52.6±2.8
DS-GNN (GIN) (EGO+) 91.0±4.8 68.7±7.0 76.7±4.4 82.0±1.4 80.3±0.9 77.1±2.6 53.2±2.8

DSS-GNN (GIN) (ED) 91.0±4.8 66.6±7.3 75.8±4.5 83.4±2.5 82.8±0.9 76.8±4.3 53.5±3.4
DSS-GNN (GIN) (ND) 91.0±3.5 66.3±5.9 76.1±3.4 83.6±1.5 83.1±0.8 76.1±2.9 53.3±1.9
DSS-GNN (GIN) (EGO) 91.0±4.7 68.2±5.8 76.7±4.1 83.6±1.8 82.5±1.6 76.5±2.8 53.3±3.1
DSS-GNN (GIN) (EGO+) 91.1±7.0 69.2±6.5 75.9±4.3 83.7±1.8 82.8±1.2 77.1±3.0 53.2±2.4

GraphConv (Morris et al., 2019) 90.5±4.6 64.9±10.4 73.9±6.1 82.4±2.7 81.7±1.0 76.1±3.9 53.1±2.9

GraphConv + ID-GNN (You et al., 2021) 89.4±4.1 65.4±7.1 71.9±4.6 83.4±2.4 82.9±1.2 76.1±2.5 53.7±3.3

RNI (Abboud et al., 2020) 91.0±4.9 64.3±6.1 73.3±3.3 82.1±1.7 81.7±1.0 75.5±3.3 53.1±1.9

DS-GNN (GRAPHCONV) (ED) 90.4±4.1 65.7±5.2 76.3±5.2 82.7±1.9 82.4±1.5 75.3±2.3 53.5±2.3
DS-GNN (GRAPHCONV) (ND) 88.3±5.1 66.6±7.8 76.8±3.9 82.9±2.5 82.7±1.3 75.7±2.9 53.5±2.1
DS-GNN (GRAPHCONV) (EGO) 89.4±5.4 66.6±6.5 76.7±5.4 81.3±1.9 79.6±2.0 76.6±4.0 53.1±1.5
DS-GNN (GRAPHCONV) (EGO+) 90.4±5.8 67.4±4.7 76.8±4.3 82.8±2.5 80.6±1.3 76.0±1.6 53.3±2.4

DSS-GNN (GRAPHCONV) (ED) 91.0±5.8 66.3±7.7 75.7±3.6 83.1±2.3 82.9±1.0 75.8±2.8 53.7±2.8
DSS-GNN (GRAPHCONV) (ND) 90.6±5.2 65.4±5.8 76.2±5.0 83.7±1.7 82.4±1.3 75.1±3.2 53.3±2.6
DSS-GNN (GRAPHCONV) (EGO) 91.5±4.9 68.0±6.1 76.6±4.6 83.5±1.1 82.5±1.6 76.3±3.6 53.1±2.8
DSS-GNN (GRAPHCONV) (EGO+) 92.0±5.0 67.7±5.7 77.0±5.4 83.4±1.8 82.6±1.5 76.6±2.8 53.6±2.8

epochs. We considered two baseline models: GIN (Xu et al., 2019) and GCN (Kipf & Welling,
2017) and we kept the proposed parameters (Hu et al., 2020), i.e., 5 GNN layers with embedding
dimension 300. We tuned the learning rate in {0.001, 0.0001}. DS-GNN implements Rsubgraphs as
either averaging or summation of node representations, the choice is made based on validation ROC-
AUC. Esets is a two-layer DeepSets (Equation (4)) with final mean readout. Its hidden dimension
is tuned in {32, 64}. As for DSS-GNN, we used the mean aggregator for the feature matrix and
used the adjacency matrix of the original graph. Module Rsubgraphs applies averaging over node
representations and, in turn, Esets averages the obtained subgraph encodings.

C.3 RNI DATASETS

We used the same training procedure and hyper parameter search scheme considered for TUDatasets.
The only architectural difference is the number of GNN layers that we increased to 6 and the em-
bedding dimension that we fixed to 64.

D ADDITIONAL EXPERIMENTS

In this section, we present some experimental results in more detail. Table 3 shows the full results
on the TUDatasets, including a comparison to the graph kernels (Gärtner et al., 2003; Shervashidze
et al., 2009; 2011; Neumann et al., 2016). Table 4 shows the full results on the OGB datasets,
reporting training, validation and test performances. Table 5 reports the results on the RNI datasets.
In the next subsection we discuss in detail the sampling procedure and its corresponding results.
Then, we conduct a timing comparison.

D.1 STOCHASTIC SAMPLING RESULTS

We performed our stochastic sampling using GIN as a base encoder. We considered three different
subgraph sub-sampling ratios: 5%, 20% and 50%. While training, we randomly sampled a subset of

18

Table 4: Results for OGBG-MOLHIV and OGBG-MOLTOX21. Gray background indicates that ESAN
outperforms the base encoder. Note that ESAN achieves much higher training accuracies with re-
spect to base graph encoders.

OGBG-MOLHIV OGBG-MOLTOX21
Method ROC-AUC (%) ROC-AUC (%)

Training Validation Test Training Validation Test

GCN (Kipf & Welling, 2017) 88.65±2.19 82.04±1.41 76.06±0.97 92.06±1.81 79.04±0.19 75.29±0.69

DS-GNN (GCN) (ED) 86.25±2.77 82.36±0.75 74.70±1.94 90.97±1.70 80.03±0.59 74.86±0.92
DS-GNN (GCN) (ND) 86.82±4.26 81.90±0.82 74.40±2.48 89.28±0.99 80.56±0.61 75.79±0.30
DS-GNN (GCN) (EGO) 91.91±3.83 83.51±0.95 74.00±2.38 89.29±1.64 80.48±0.52 75.41±0.72
DS-GNN (GCN) (EGO+) 86.85±3.57 81.95±0.69 73.84±2.58 90.24±1.20 80.77±0.51 74.74±0.96

DSS-GNN (GCN) (ED) 99.52±0.34 83.44±1.10 76.00±1.41 94.60±1.10 80.05±0.40 75.34±0.69
DSS-GNN (GCN) (ND) 97.40±3.52 82.88±1.29 75.17±1.35 93.82±2.47 81.22±0.52 75.56±0.59
DSS-GNN (GCN) (EGO) 98.56±2.08 84.34±1.02 76.16±1.02 93.06±2.54 81.51±0.43 76.14±0.53
DSS-GNN (GCN) (EGO+) 98.47±2.20 84.45±0.65 76.50±1.38 91.60±1.81 81.55±0.63 76.29±0.78

GIN (Xu et al., 2019) 88.64±2.54 82.32±0.90 75.58±1.40 93.06±0.88 78.32±0.48 74.91±0.51

DS-GNN (GIN) (ED) 91.71±3.50 83.32±0.83 76.43±2.12 92.38±1.57 78.98±0.45 75.12±0.50
DS-GNN (GIN) (ND) 89.70±3.20 83.21±0.87 76.19±0.96 91.23±2.15 79.61±0.59 75.34±1.21
DS-GNN (GIN) (EGO) 93.43±2.17 84.28±0.90 78.00±1.42 92.08±1.79 81.28±0.54 76.22±0.62
DS-GNN (GIN) (EGO+) 90.53±3.01 84.63±0.83 77.40±2.19 90.07±1.65 81.29±0.57 76.39±1.18

DSS-GNN (GIN) (ED) 91.69±3.47 83.33±0.98 77.03±1.81 95.85±2.08 80.83±0.41 76.71±0.67
DSS-GNN (GIN) (ND) 90.71±4.28 83.62±1.20 76.63±1.52 96.90±1.45 81.22±0.23 77.21±0.70
DSS-GNN (GIN) (EGO) 97.05±3.50 85.72±1.21 77.19±1.27 95.58±1.61 81.80±0.20 77.45±0.41
DSS-GNN (GIN) (EGO+) 94.47±2.13 85.51±0.79 76.78±1.66 96.06±1.61 81.82±0.21 77.95±0.40

Table 5: Results for RNI dataset. Gray background indicates that ESAN outperforms the base en-
coder. DS/DSS-GNN can boost the performance of both base graph encoders, GIN and GraphConv,
from random to perfect.

EXP CEXP

GIN (Xu et al., 2019) 51.1±2.1 70.2±4.1

GIN + IDGNN (You et al., 2021) 100±0.0 100±0.0

DS-GNN (GIN) (ED/ND/EGO/EGO+) 100±0.0 100±0.0
DSS-GNN (GIN) (ED/ND/EGO/EGO+) 100±0.0 100±0.0

GraphConv (Morris et al., 2019) 50.3±2.6 72.9±3.6

GraphConv + IDGNN (You et al., 2021) 100±0.0 100±0.0

DS-GNN (GRAPHCONV) (ED/ND/EGO/EGO+) 100±0.0 100±0.0
DSS-GNN (GRAPHCONV) (ED/ND/EGO/EGO+) 100±0.0 100±0.0

subgraphs for each graph in each epoch. During evaluation, we performed majority voting using 5
different subgraph sampling sets for each graph. We performed hyper parameter tuning as detailed in
Appendix C, and compared the performances of the sub-sampling method both to the base encoder,
and to the corresponding approach without the sub-sampling procedure (reported as 100%). Results
for the TUDatasets can be found in Table 6. As can be seen in the table, the performance of our
approaches do not generally degrade when seeing only a fraction of the subgraphs. Table 7 shows
the performance of our stochastic variant on the RNI datasets. Even a small fraction of subgraphs is
enough to achieve good results on EXP and CEXP. Notably, DSS-GNN works better than DS-GNN
for the fraction 5%.

D.2 TIMING

We focus our analysis on NCI1 dataset from Morris et al. (2020a) (4110 graphs, 30 nodes/edges
per graph on average) and estimated the time to perform a single training epoch on a RTX 2080
GPU. We used GIN as a base encoder and compared the times of: (1) DS-GNN and DSS-GNN
without sampling (100% subgraphs – full bags); (2) DS-GNN and DSS-GNN with sampling (20%
of subgraphs); (3) the baseline GIN method. We kept the hyperparameters the same for all meth-
ods to allow a fair comparison. Results are reported in Table 8. As can be seen in the table, our
method takes around 2x the time of the corresponding GIN baseline for DS-GNN, and around 3x

19

Table 6: Results of our stochastic sampling approach on TUDatasets, where each graph sees 100%,
50%, 20%, 5% of the subgraphs in the selected policy (100% corresponds to full bags). Gray
background indicates that ESAN outperforms the base encoder.

MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M

GIN (Xu et al., 2019) 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 82.2±1.6 75.1±5.1 52.3±2.8

DS-GNN (GIN) (ED)

100% 89.9±3.7 66.0±7.2 76.8±4.6 83.3±2.5 83.0±1.7 76.1±2.6 52.9±2.4
50% 89.9±5.6 67.7±5.9 76.9±3.8 83.0±1.8 83.0±1.0 76.3±2.6 52.9±2.6
20% 90.5±5.2 66.3±5.3 77.1±4.5 83.6±1.9 82.9±1.6 76.2±2.4 53.2±2.4
5% 88.8±6.5 65.7±7.3 76.8±4.6 83.8±1.9 82.7±1.8 76.2±2.8 53.3±2.4

DS-GNN (GIN) (ND)

100% 89.4±4.8 66.3±7.0 77.1±4.6 83.8±2.4 82.4±1.3 75.4±2.9 52.7±2.0
50% 88.9±4.3 66.2±6.8 76.8±5.2 83.1±1.5 82.7±1.6 75.5±2.8 52.9±2.2
20% 88.9±5.5 66.0±6.1 77.2±2.9 84.0±1.6 82.7±0.8 75.5±1.6 52.5±2.9
5% 88.3±4.5 66.3±8.7 77.3±4.1 83.7±2.2 82.8±0.7 75.5±3.9 52.1±1.8

DS-GNN (GIN) (EGO)

100% 89.9±6.5 68.6±5.8 76.7±5.8 81.4±0.7 79.5±1.0 76.1±2.8 52.6±2.8
50% 89.9±5.6 67.5±5.8 76.9±4.6 81.7±1.4 80.3±0.8 76.8±2.3 52.4±2.7
20% 88.3±5.8 67.5±8.8 77.3±4.1 80.7±1.1 78.3±2.1 76.9±2.6 52.8±2.6
5% 86.8±7.1 67.7±8.6 76.9±4.4 77.0±1.9 74.0±1.6 76.9±3.5 52.3±2.8

DS-GNN (GIN) (EGO+)

100% 91.0±4.8 68.7±7.0 76.7±4.4 82.0±1.4 80.3±0.9 77.1±2.6 53.2±2.8
50% 91.6±5.4 67.8±8.4 77.5±4.7 82.5±1.1 80.4±1.1 76.4±3.1 53.1±3.6
20% 91.5±6.0 66.3±8.0 77.1±4.4 81.5±1.6 79.0±2.1 76.2±2.3 52.6±1.6
5% 88.4±5.1 67.7±6.4 77.2±4.2 77.2±1.7 75.2±0.7 77.2±2.3 53.2±3.9

DSS-GNN (GIN) (ED)

100% 91.0±4.8 66.6±7.3 75.8±4.5 83.4±2.5 82.8±0.9 76.8±4.3 53.5±3.4
50% 90.5±5.1 66.3±6.7 75.9±4.3 83.0±2.4 82.4±1.6 76.1±3.1 53.7±2.4
20% 90.4±5.3 66.6±6.3 76.3±3.8 83.1±1.7 82.9±1.9 76.5±3.3 52.9±1.8
5% 89.4±6.2 65.7±7.0 75.4±4.5 83.2±2.1 83.3±1.3 77.0±3.2 53.3±3.4

DSS-GNN (GIN) (ND)

100% 91.0±3.5 66.3±5.9 76.1±3.4 83.6±1.5 83.1±0.8 76.1±2.9 53.3±1.9
50% 88.9±6.1 65.1±4.8 76.4±3.9 83.1±2.3 82.4±1.6 75.6±2.4 53.1±2.6
20% 89.9±4.3 66.0±9.0 76.2±4.8 83.2±2.2 82.3±1.4 75.9±1.8 53.5±3.0
5% 89.9±5.2 67.2±7.0 77.0±3.9 82.8±2.0 82.6±1.8 76.3±4.6 53.1±2.8

DSS-GNN (GIN) (EGO)

100% 91.0±4.7 68.2±5.8 76.7±4.1 83.6±1.8 82.5±1.6 76.5±2.8 53.3±3.1
50% 91.5±5.5 68.8±7.7 77.3±3.5 83.5±1.8 83.0±0.8 76.3±3.2 52.9±3.1
20% 91.5±4.8 66.3±5.9 77.1±4.4 83.4±1.4 82.8±1.0 76.9±3.0 52.8±3.1
5% 89.4±5.2 67.1±7.5 76.6±4.3 83.3±2.0 83.0±1.4 77.2±3.2 52.9±2.4

DSS-GNN (GIN) (EGO+)

100% 91.1±7.0 69.2±6.5 75.9±4.3 83.7±1.8 82.8±1.2 77.1±3.0 53.2±2.4
50% 91.0±5.8 66.9±7.4 77.1±3.0 83.7±1.4 83.0±1.7 76.4±4.1 53.0±3.1
20% 90.5±5.2 66.6±7.2 77.4±4.5 83.7±1.3 82.9±1.1 77.7±3.4 53.2±2.9
5% 89.4±5.2 67.2±6.3 76.8±3.1 83.3±1.4 83.2±1.3 77.1±1.9 53.5±2.6

for DSS-GNN. Sampling reduces these times by 10-15%, showcasing how our stochastic version
can be beneficial in practice. Note that these times consider a single process completing a single
training epoch. In our implementation, we perform the cross validation in parallel, making use of
multiprocessing. The overall speedup gained by the parallelism comes at the cost of a fixed over-
head. This added overhead reduces significantly the gap between our method and the baseline. In
practice, we take less than twice the time of GIN on the NCI1 dataset, even without sampling. In-
deed, DS-GNN (GIN) takes around 50 minutes to perform the entire 10-fold cross validation with
350 epochs for all policies and full bags, with DSS-GNN (GIN) taking a few minutes longer. GIN
takes around 30 minutes for the same amount of work.

20

Table 7: Results of our stochastic sampling approach on RNI datasets, where each graph sees 100%,
50%, 20%, 5% of the subgraphs in the selected policy (100% corresponds to full bags). Gray
background indicates that ESAN outperforms the base encoder.

EXP CEXP

GIN 51.2±2.1 70.2±4.1

DS-GNN (GIN) (ED)

100% 100±0.0 100±0.0
50% 100±0.0 100±0.0
20% 100±0.0 99.9±0.2
5% 99.7±0.4 99.9±0.2

DS-GNN (GIN) (ND)

100% 100±0.0 100±0.0
50% 100±0.0 99.9±0.2
20% 100±0.0 99.9±0.2
5% 97.2±1.1 99.8±0.8

DS-GNN (GIN) (EGO)

100% 100±0.0 100±0.0
50% 100±0.0 99.9±0.2
20% 99.9±0.2 96.8±1.5
5% 93.5±1.3 83.9±3.8

DS-GNN (GIN) (EGO+)

100% 100±0.0 100±0.0
50% 100±0.0 99.9±0.2
20% 99.7±0.4 97.0±1.4
5% 93.7±2.7 83.2±2.6

DSS-GNN (GIN) (ED)

100% 100±0.0 100±0.0
50% 100±0.0 100±0.0
20% 100±0.0 100±0.0
5% 99.8±0.3 100±0.0

DSS-GNN (GIN) (ND)

100% 100±0.0 100±0.0
50% 100±0.0 100±0.0
20% 100±0.0 100±0.0
5% 97.7±1.0 99.9±0.2

DSS-GNN (GIN) (EGO)

100% 100±0.0 100±0.0
50% 100±0.0 100±0.0
20% 100±0.0 100±0.0
5% 99.2±0.6 100±0.0

DSS-GNN (GIN) (EGO+)

100% 100±0.0 100±0.0
50% 100±0.0 100±0.0
20% 100±0.0 100±0.0
5% 99.5±0.6 100±0.0

Table 8: Timing comparison per epoch. Time taken for a single epoch with batch size 32 on the
NCI1 dataset on a RTX 2080 GPU. All values are in seconds.

BASELINE 100% SUBGRAPHS 20% SUBGRAPHS

GIN (Xu et al., 2019) 1.00±0.05 - -

DS-GNN (GIN) (ED) - 2.07±0.01 1.73±0.01
DS-GNN (GIN) (ND) - 2.08±0.03 1.71±0.01
DS-GNN (GIN) (EGO) - 1.96±0.01 1.72±0.01
DS-GNN (GIN) (EGO+) - 2.01±0.02 1.73±0.01

DSS-GNN (GIN) (ED) - 3.26±0.07 2.94±0.01
DSS-GNN (GIN) (ND) - 3.19±0.07 2.91±0.02
DSS-GNN (GIN) (EGO) - 3.14±0.04 2.79±0.02
DSS-GNN (GIN) (EGO+) - 3.19±0.03 2.90±0.01

E WL VARIANTS AND PROOFS FOR SECTION 3.2

This appendix includes additional details for Section 3.1 and proofs for the theoretical results in
Section 3.2 of the main paper, along with additional context and results.

E.1 PRELIMINARIES

Let us first introduce some notation and required definitions. We begin with the definition of vertex
coloring (Rattan & Seppelt, 2021).
Definition 1 (Vertex coloring). A vertex coloring is a function mapping a graph and one of its nodes
to a “color” from a fixed color palette.

21

Algorithm 1 WL Test

Require: G1, G2, ι : v 7→ lv (opt.)
1: t← 0, converged← false
2: for v ∈ G1 ∪G2 do
3: c0v ← c̄ or ι(v) if provided
4: c0G1 ← {{c0v | v ∈ G1}}
5: c0G2 ← {{c0v | v ∈ G2}}
6: while ctG1 = ctG2 and not converged do
7: for i ∈ {1, 2} do
8: for v ∈ Gi do
9: N t

v ← {{ctw | w ∈ N i(v)}}
10: ct+1

v ← HASH(ctv, N
t
v)

11: ct+1
Gi ← {{c

t+1
v | v ∈ Gi}}

12: if ctG1 v ct+1
G1 and ctG2 v ct+1

G2 then
13: converged← true
14: t← t+ 1
15: if ctG1 6= ctG2 then
16: return non-isomorphic
17: else
18: return possibly isomorphic

Generally, we can define a vertex color-
ing as a function c : V → C, (G, v) 7→
cGv , where V is the set of all possible
tuples of the form (G, v) with G =
(V,E) ∈ U (the set of all finite graphs)
and v ∈ V . Concretely we write c :
(G, v) 7→ cGv and we sometimes drop the
superscript G whenever clear from the
context. In order to design and compare
vertex colorings, it is important to intro-
duce the notion of refinement.

Definition 2 (Vertex color refinement).
Let c, d be two vertex colorings. We
say that d refines c (or d is a refine-
ment of c) when for all graphs G =
(V G, EG), H = (V H , EH) and all ver-
tices v ∈ V G, u ∈ V H we have that
dGv = dHu =⇒ cGv = cHu . We write
d v c.

When working with a specific graph pair
G1, G2, we write d vG1,G2 c when, in
particular, it holds that ∀v ∈ V G

1

, u ∈
V G

2

, dG
1

v = dG
2

u =⇒ cG
1

v = cG
2

u .

The 1-WL test, sometimes known as
“naı̈ve vertex refinement” (and some-
times simply as “WL” in this manuscript) is an efficient heuristic to test (non-)isomorphism between
graphs. We report the related pseudocode in Algorithm 1.

The algorithm represents a graph with the multiset (or histogram) of colors associated with its nodes.
colors naturally induce a partitioning of the nodes into color classes, in the sense that two nodes
belong to the same partition if and only if they are equally colored. We denote with c−1(v) the
partition to which node v belongs to, according to coloring c. Starting from an initial vertex coloring,
the algorithm iterates rounds whereby the node partitioning gets finer and finer. These rounds are
referred to as “refinement steps” since, if c indicates the colorings computed by the WL algorithm,
ct+1 vG,G ct:

Proposition 4. Let G be a graph and ctS be the vertex coloring computed by WL. Then, ∀t >
0, ct+1 vG,G ct.

Proof. For those nodes v, u in the vertex set of G such that ct+1
v = ct+1

u we have HASH(ctv, N
t
v) =

HASH(ctu, N
t
u) and, necessarily, ctv = ctu due to the injectivity of the HASH function.

The refinement is at convergence when the node partitioning is stable, that is, when it does not vary
across steps. This means that, both ct+1 vG,G ct and ct vG,G ct+1 hold. At convergence on
both the two input graphs, the test deems them non-isomorphic if assigned distinct multisets of node
colors, it is inconclusive otherwise.

We report the full DSS-WL test in Algorithm 2. Let us first note that both DSS-WL and DS-WL
produce color refinements at the level of each subgraph:

Proposition 5. Let G be a graph, π be a subgraph selection policy and G be the bag induced by π
on G. Let ctS be the vertex coloring computed by DSS-WL (DS-WL) over subgraph S ∈ G at round
t. Then, ∀S ∈ G,∀t > 0, ct+1

S vS,S ctS .

Proof. In the case of DS-WL, the assertion is immediately proved by observing that the algorithm
performs independent WL refinements on each subgraph, and we know the standard WL procedure
is indeed a vertex refinement one.

22

The assertion trivially holds also in the case of DSS-WL. Suppose there exist nodes v, u in
the vertex set of S such that ct+1

v,S = ct+1
u,S . This implies HASH(ctv,S , N

t
v,S , C

t
v,M

t
v) =

HASH(ctu,S , N
t
u,S , C

t
u,M

t
u) and, necessarily, ctv,S = ctu,S due to the injectivity of the HASH func-

tion.

Algorithm 2 DSS-WL Test

Require: G1, G2, π, ι : v 7→ lv (opt.)
1: t← 0, converged← false
2: G1 ← π(G1), G2 ← π(G2)
3: for S ∈ G1 ∪ G2 do
4: for v ∈ S do
5: c0v,S ← c̄ or ι(v) if provided

6: c0S ← HASH({{c0v,S | v ∈ S}})
7: cG1 ← {{c0S | S ∈ G1}}, cG2 ← {{c0S | S ∈ G2}}
8: while cG1 = cG2 and not converged do
9: for i ∈ {1, 2} do

10: for S ∈ Gi do
11: for v ∈ S do
12: N t

v,S ← {{ctw,S | w ∈ NS(v)}}
13: Ctv ← {{ctv,R | R ∈ Gi}}
14: M t

v ← {{Ctw | w ∈ N (v)}}
15: ct+1

v,S ← HASH(ctv,S , N
t
v,S , C

t
v,M

t
v)

16: ct+1
S ← HASH({{ct+1

v,S | v ∈ S}})
17: cGi ← {{ct+1

S | S ∈ Gi}}
18: if ∀S ∈ G1 ∪ G2, ctS v c

t+1
S then

19: converged← true
20: t← t+ 1
21: if cG1 6= cG2 then
22: return non-isomorphic
23: else
24: return possibly isomorphic

An immediate consequence of the above
considerations is that, for vertex refine-
ment algorithms, if two vertices belong
to distinct partitions at time step t, they
will for any other t̄ > t. This allows us to
conclude that both DSS-WL and DS-WL
tests eventually terminate on any pair of
(finite) input graphs.

Proposition 6. Let G1, G2 be any pair
of finite graphs. There exists t̄ <∞ such
that the DSS-WL (DS-WL) test converges
when run on G1, G2 with any subgraph
selection policy π.

Proof. Let G1,G2 be the bags induced
by π on G1, G2. The two tests converge
when, on all subgraph, the node parti-
tioning induced by the coloring does not
vary across two consecutive steps. Due
to Proposition 5, we know that their col-
orings are vertex refinements on each of
the subgraphs. This implies that, at it-
eration t + 1, the partitioning on a sub-
graph is either as fine as, or finer than
the one at iteration t. In other words,
if Nt,S is the number of color classes
at round t on subgraph S, we have that
Nt+1,S ≥ Nt,S . At the same time, the
value Nt,S ,∀t ≥ 0 is upper bounded by
NS < ∞, i.e. the cardinality of the
vertex set of S. This implies that the
number of possible iterations before con-
vergence must be upper-bounded by the
value ν = maxi

(∑
S∈Gi NS

)
, which is,

itself, finite.

The concept of vertex color refinement is linked to the ability to distinguish between non-isomorphic
graphs. This is a consequence of the following Lemma, whose proof is adapted from Bodnar et al.
(2021b).

Lemma 2. Let c, d : V → N be coloring functions implementing maps in the form (A, a) 7→
ca, (A, a) 7→ da, with (A, a) ∈ V such that A is a set and a ∈ A. Let A,B be two sets such that
(A, ·), (B, ·) ∈ V and Aφ,Bφ be multisets of colors defined as: Aφ = {{φa|a ∈ A}},Bφ = {{φb|b ∈
B}}, φ ∈ {c, d} Suppose that ∀a, b ∈ A ∪ B, da = db =⇒ ca = cb (we write d vA,B c). Then
Ac 6= Bc =⇒ Ad 6= Bd.

Proof. If Ac 6= Bc, we assume, w.l.o.g., that there is a color c̄ which is represented more in Ac than
in Bc. In other words, if we define the two sets:

Ac̄ = {a ∈ A|ca = c̄}, Bc̄ = {b ∈ B|cb = c̄}

then |Ac̄| > |Bc̄|. These sets naturally define the partitioning:

A = Ac̄ ∪ Ãc̄, B = Bc̄ ∪ B̃c̄

23

where Ãc̄ = {a ∈ A|ca 6= c̄}, B̃c̄ = {b ∈ B|cb 6= c̄}. Let us now consider the multisets:

A∗d = {{da|a ∈ Ac̄}},B∗d = {{db|b ∈ Bc̄}}

First, each of these multisets have the same cardinality of the generating sets, that is |A∗d| =
|Ac̄|, |B∗d| = |Bc̄| so, we necessarily have A∗d 6= B∗d. Second, in view of the fact that d vA,B c,
although the two multisets may generally contain more than one color, these colors cannot appear
outside of these last ones. More formally, by construction we have that

∀x ∈ Ac̄ ∪Bc̄, y ∈ Ãc̄ ∪ B̃c̄ cx 6= cy

and, due to d vA,B c it must also hold that:

∀x ∈ Ac̄ ∪Bc̄, y ∈ Ãc̄ ∪ B̃c̄ dx 6= dy

This implies that, if we define multisets

Ã∗d = {{da|a ∈ Ãc̄}}, B̃∗d = {{db|b ∈ B̃c̄}}

then (A∗d ∪ B∗d) ∩ (Ã∗d ∪ B̃∗d) = ∅.

Now, we have thatAd = A∗d∪Ã∗d,Bd = B∗d ∪B̃∗d,A∗d 6= B∗d. Say that, w.l.o.g., this last holds due to
a color d̄ appearing nA times inA∗d and nB times in B∗d with nA > nB . Then, a necessary condition
forAd = Bd is that d̄ appears nA−nB times more in B̃∗d than in Ã∗d. However, this condition cannot
be met due to the disjointness of the multisets as shown above.

Definition 3. Let c be a vertex coloring. A readout mapAc : (V,E) 7→ φ({{cGv |v ∈ V }}) is function
representing a graph G = (V,E) with the multiset of node colors generated by c on V , or an
injection thereof (φ).

Readout maps allow us to leverage on colorings to test (non-)isomorphism between graphs: we can
define algorithmic tests whereby two graphs are distinguished when their readout representations
are distinct. This is the case of the WL test, where φ is the identity function and c is the coloring
induced by a certain number of rounds of the refinement procedure.

The following is an immediate consequence of Lemma 2.
Corollary 2. Let c, d be two vertex coloring functions such that d v c. LetAc,Ad be readout maps
associated with, respectively, vertex colorings c, d. Then, any two graphs distinguished by Ac are
also distinguished by Ad. We say Ad refines Ac and write Ad v Ac.

When Ad v Ac then Ad is said to be at least as powerful as Ac. When the opposite holds, that is
Ac v Ad, then the two have the same discriminative power and we writeAc ≡ Ad. On the contrary,
if there exist a pair of graphs distinguished by Ad which are indistinguishable by Ac, then we say
Ad is strictly more powerful than Ac, and write Ad @ Ac.
Let us lastly introduce some general, auxiliary lemmas that will be required for the proofs in the
following subsection.
Lemma 3. Let A, B be two multisets with elements in D such that A = {{ai}}mi=1 = {{bi}}mi=1 = B.
For any injection ϕ : D → C it holds ϕ(A) = {{ϕ(ai)}}mi=1 = {{ϕ(bi)}}mi=1 = ϕ(B).

Proof. Let us suppose, for the sake of contradiction, that ϕ(A) 6= ϕ(B). Thus, we can assume,
w.l.o.g., that there exists an image c̄ such that c̄ appears more times in ϕ(A) than in ϕ(B), that is

|{cA|cA = c̄, cA ∈ ϕ(A)}| > |{cB |cB = c̄, cB ∈ ϕ(B)}|

If ϕ is an injection, then ∀c ∈ Im(ϕ) ⊆ C there exists unique d ∈ D such that c = ϕ(d). This
implies that there exist dA, dB , d̄ such that we can rewrite the inequality above as:

|{ϕ(dA)|ϕ(dA) = ϕ(d̄), dA ∈ A}| > |{ϕ(dB)|ϕ(dA) = ϕ(d̄), dB ∈ B}|

and then
|{dA|dA = d̄, dA ∈ A}| > |{dB |dB = d̄, dB ∈ B}|

which would immediate entail A 6= B, against our hypothesis.

24

Lemma 4. Let A, B be two multisets with elements in D1 × . . . × Dk such that A =
{{(a1

i , . . . , a
k
i)}}mi=1, B = {{(b1i , . . . , bki)}}mi=1 and ∀i,Di is countable. Let Aj = {{aji}}mi=1, B

j =

{{bji}}mi=1,∀j = 1, . . . , k. Then A = B implies Aj = Bj .

Proof. Suppose A = B. Since elements in A,B are from a countable universe, there exists (col-
oring) bijection ϕ : D1 × . . . × Dk → N uniquely mapping elements in A,B to naturals: ∀i =

1, . . . ,m ai 7→ cai , bi 7→ cbi . Let us define ψj : Dj → Im(ϕ) as ψj : aji 7→ ϕ(ai) = cai , ai ∈ A
and equivalently for elements in B. Map ψj is itself a bijection. Now, maps ϕ,ψj clearly induce
colorings such that ϕ vA,B ψj . From Lemma 3 we have that A = B =⇒ ϕ(A) = ϕ(B) and,
in light of Lemma 2 we have that ϕ(A) = ϕ(B) =⇒ ψj(A) = ψj(B). Finally, by applying
Lemma 3 again we have ψj(A) = ψj(B) =⇒ ψj

−1 ◦ ψj(A) = ψj
−1 ◦ ψj(B), which concludes

the proof.

E.2 PROOFS FOR RESULTS IN SECTION 3.2

E.2.1 DSS-WL VS. DS-WL

We start by formally proving that DSS-WL is at least as expressive as DS-WL. We will require the
following Lemma, which describes a refinement relation between DSS-WL node coloring on each
subgraph and WL ones.

Lemma 5. Let π be any subgraph selection policy, G1, G2 be any two graphs and D1,D2 the
π-bags thereof. Let a(t), b(t) generally refer to the coloring generated by t steps of, respectively,
the WL and DSS-WL algorithms. Then, for any t ≥ 0, ∀G = (VG, EG), H = (VH , EH) ∈
D1 ∪ D2, b

(t) vG,H a(t).

Proof. We seek to show that ∀v ∈ VG, u ∈ VH , bG,(t)v = b
H,(t)
u =⇒ a

G,(t)
v = a

H,(t)
u . As usual, let

us prove the lemma by induction on t.

(Base case) The thesis trivially holds for t = 0 given that all nodes in all subgraphs are assigned the
same color. Let us assume the thesis holds true for t > 0, we seek to show it also holds for t+ 1.

(Step) Suppose that, for nodes v, u we have bG,(t+1)
v = b

H,(t+1)
u . The equality can be rewritten as

HASH(b
G,(t)
v , N

G,(t)
v , C

(t)
v ,M

(t)
v) = HASH(b

H,(t)
u , N

H,(t)
u , C

(t)
u ,M

(t)
u), which implies the equal-

ity between each of the inputs to the HASH function. Importantly, this means that bG,(t)v = b
H,(t)
u

and N
G,(t)
v = N

H,(t)
u . The induction hypothesis immediately gives us aG,(t)v = a

F,(t)
w and

{{aG,(t)i |i ∈ NG(v)}} = {{aF,(t)j |j ∈ NF (w)}}, by the definition of NG,(t)
v and N

F,(t)
w and in

view of Lemma 2. These are equalities between the (only) inputs in the WL color refinement step,
which applies an injective HASH to obtain aG,(t+1)

v and aH,(t+1)
u . It then immediately follows that

a
G,(t+1)
v = a

H,(t+1)
u .

As a consequence, we have the following corollary:

Corollary 3. Let π be any subgraph selection policy, G1, G2 be any two graphs and D1,D2 the
π-bags thereof. Let a(t)

G and b(t)G refer to the subgraph colors assigned to subgraphs G at step t
by, respectively, DS-WL and DSS-WL. For any pair of subgraphs G,H ∈ D1 ∪ D2, and time step
t ≥ 0, if DS-WL assigns a distinct color to G and H then DSS-WL does so as well: a(t)

G 6= a
(t)
F =⇒

b
(t)
G 6= b

(t)
F .

Proof. In both algorithms, subgraph colors are obtained by injectively hashing the multisets of node
colors therein. Furthermore, in DS-WL, the node colors at time step t on generic subgraph G are
obtained by independently running t rounds of the WL procedure on G. The thesis therefore holds
in view of Lemma 5, Lemma 2 and Lemma 3.

Equipped with the above, we can now prove the following:

25

Proposition 7. Let π be any subgraph selection policy. When both are run on the same π-induced
bags, DSS-WL is at least as powerful as DS-WL in distinguishing non-isomorphic graphs, i.e., any
two non-isomorphic graphs G1, G2 distinguished by DS-WL via policy π are also distinguished by
DSS-WL via the same policy.

Proof. Let D1 = {{G1
k}}mk=1,D2 = {{G2

h}}mh=1 be the bags induced by π on G1, G2. Let a(t) and
b(t) refer to the subgraph coloring computed at step t by, respectively, DS-WL and DSS-WL (these
assign each subgraph a color by hasing the multiset of node colors at time t). Also, suppose DS-
WL distinguishes between G1, G2 at time step T . The theorem immediately follows in light of
Corollary 3 and Lemma 2. Let D1,D2 correspond to, respectively sets A,B from Lemma 2, and
let a(T), b(T) correspond to, respectively, colorings c, d from the same proposition. If G1, G2 are
distinguished by DS-WL at step T , then we have Ac 6= Bc. Also, in view of Corollary 3, it holds
that b(T) vD1,D2 a(T), that is d vA,B c. All hypotheses in Lemma 2 hold and we can then conclude
that Ad 6= Bd that is Ab(T) 6= Bb(T) . This shows DSS-WL assigns the two bags distinct multisets of
colors, and thus, as DS-WL, it distinguishes between the two graphs G1, G2.

E.2.2 EXPRESSIVENESS OF WL VARIANTS

In this Subsection we will characterize the expressive power of our variants in relation to the standard
WL test. We will first show that DSS-WL and DS-WL are indeed at least as powerful as the standard
WL test when equipped with non-trivial subgraph selection policies. These will form the necessary
premise to prove Theorem 1.

We start by characterizing DSS-WL and, in particular, with some required Definitions and Lemmas.
Definition 4. Let G = (V,E) be any graph. Let π be any subgraph selection policy generating an
m-subgraph bag SπG = {Gi = (Vi, Ei)}mi=1 over G. Policy π is said to be vertex set preserving if
∀i = 1, . . . ,m, Vi = V .

Intuitively, a vertex set preserving policy is a policy which does not perturb the original vertex set;
subgraphs are obtained by taking subsets of edges. Note that the ND policy is vertex set preserving
if, instead of removing one node and all the related connectivity, it removes its incident edges only.

An important component of the DSS-WL algorithm is the HASH input C(t)
v , which represents the

multiset of colors for node v across the subgraphs in the bag.
Definition 5. Let G = (V,E) be any graph. Let π be a vertex set preserving policy generating an
m-subgraph bag SπG. The needle node color for node v ∈ V at time step t ≥ 0, denoted C(t)

v , is
defined as {{c(t)v,S}}S∈SπG , where c(t)v,k is the node color of node v on subgraph k at time step t. We

remark that the needle node color C(t)
v is employed by the DSS-WL algorithm to obtain a refinement

at time step (t+ 1).

We now introduce a first result allowing us to compare DSS-WL and WL.
Lemma 6. Let π be any vertex set preserving policy. Let bπ denote the (needle) node coloring
from DSS-WL running on bags induced by π, and a be the node coloring from the standard WL
algorithm. Then bπ v a, that is, for all graphs G1 = (V 1, E1) and G2 = (V 2, E2) and all nodes
v ∈ V 1, w ∈ V 2 we have that bπv = bπw =⇒ av = aw.

Proof. Let G1, G2 be any two graphs, a(t) refer to the WL coloring at iteration t, and b(t) refer to
the needle coloring induced by DSS-WL at the same iteration (we drop the superscript π to ease the
notation). We seek to prove that b(t) v a(t)∀t ≥ 0. We prove the lemma by induction on time step
t.

In particular, let us refer with a(t)
v to the WL-color assigned to node v at time step t, and with b(t)v

to the needle node color DSS-WL assigns to the same node at the same iteration. We remark that
this last is defined as b(t)v = C

(t)
v = {{c(t)v,S}}S∈SπG , with c(t)v,k the DSS-WL color assigned to node v

at time step t on subgraph S.

(Base case) At t = 0, it clearly holds that b(0) v a(0) given that all nodes are initialised with the
same constant color c̄.

26

(Step) Let us assume the thesis holds true at time step t: b(t)v = b
(t)
w =⇒ a

(t)
v = a

(t)
w . We seek to

prove that if that is the case, it also holds true at time step t+ 1.

Suppose b(t+1)
v = b

(t+1)
w . Unrolling one step backwards in time we get:

{{g(b
(t)
v,S , N

(t)
v,S , C

(t)
v ,M (t)

v)}}S∈Sπ
G1

= {{g(b
(t)
w,R, N

(t)
w,R, C

(t)
w ,M (t)

w)}}R∈Sπ
G2

where g ≡ HASH. In view of Lemma 3, the following equality also holds:

{{g−1 ◦ g(b
(t)
v,S , N

(t)
v,S , C

(t)
v ,M (t)

v)}}S∈Sπ
G1

= {{g−1 ◦ g(b
(t)
w,R, N

(t)
w,R, C

(t)
w ,M (t)

w)}}R∈Sπ
G2

since, due to the injectivity of g, the left inverse g−1 : Im(g) → D(g) exists and is injective. Thus
we have:

{{(b(t)v,S , N
(t)
v,S , C

(t)
v ,M (t)

v)}}S∈Sπ
G1

= {{(b(t)w,R, N
(t)
w,R, C

(t)
w ,M (t)

w)}}R∈Sπ
G2

where, in view of Lemma 4, we also have:

{{C(t)
v }}S∈Sπ

G1
= {{C(t)

w }}R∈Sπ
G2
, {{M (t)

v }}S∈Sπ
G1

= {{M (t)
w }}R∈Sπ

G2

The elements of these multisets do not depend on index k, therefore we can rewrite the equalities as
the set equalities:

{(C(t)
v , |SπG1 |)} = {(C(t)

w , |SπG2 |)}, {(M (t)
v , |SπG1 |)} = {(M (t)

w , |SπG2 |)}

which obviously imply
C(t)
v = C(t)

w , M (t)
v = M (t)

w

First, we note that b(t)v = C
(t)
v = C

(t)
w = b

(t)
w , which by the induction hypothesis gives us a(t)

v = a
(t)
w .

Second, we note that M (t)
v = {{b(t)i |i ∈ N (v)}} and M (t)

w = {{b(t)j |j ∈ N (w)}}. By the induction

hypothesis, Lemma 2 gives us that M (t)
v = M

(t)
w =⇒ {{a(t)

i |i ∈ N (v)}} = {{a(t)
j |j ∈ N (w)}}.

This, along with the result above, implies a(t+1)
v = a

(t+1)
w , since both the two inputs to hash g at

time step t coincide. The proof terminates.

Finally, by leveraging on the above Lemma, we show that DSS-WL is at least as powerful as the
WL test in distinguishing between non-isomorphic graphs, when equipped with vertex set preserving
policies.

Lemma 7. Let π be any vertex set preserving policy. DSS-WL on π-induced bags is at least as pow-
erful as WL in distinguishing non-isomorphic graphs, i.e., any two non-isomorphic graphs G1, G2

distinguished by WL are also distinguished by DSS-WL when run on the respective π-induced bags.

Proof. Throughout the proof, we will denote with a colorings generated by the WL algorithm, while
b will denote needle colorings generated by DSS-WL and c its node colorings on subgraphs. Addi-
tionally, we denote as D1,D2 the π-bags of, respectively, G1, G2. We suppose the two bags have
both cardinality m, and are defined as D1 = {{G1

k = (V 1, E1
k)}}mk=1,D2 = {{G2

h = (V 2, E2
h)}}mh=1.

We do not explicitly focus on the case |D1| 6= |D2| as the two graphs would then be (trivially)
distinguished by DSS-WL.

Let us start by recalling that at time step t, two graphs are deemed non-isomorphic by the WL
algorithm when the two are assigned two distinct multisets of node colors:

{{a(t)
v |v ∈ V 1}} 6= {{a(t)

w |w ∈ V 2}}

while the DSS-WL algorithm deems them non-isomorphic when the two are assigned two distinct
multisets of subgraph colors, that is:

{{b(t)
G1
k
}}mk=1 6= {{b

(t)

G2
h
}}mh=1

where b(t)
Gij

generally indicates the color computed for subgraph j of graph Gi: {{c(t)v,j |v ∈ V i}}.

27

Suppose WL distinguishes between the two graphs at iteration T . In view of Lemma 6, we know
that b(T) v a(T), where b(T) is the needle node coloring generated by DSS-WL at time step T . At
the same time, it can be shown that the needle coloring at T is refined by the coloring generated by
DSS-WL at T + 1 on any pair of subgraphs: ∀G,H ∈ D1 ∪ D2 c(T+1) vG,H b(T). Let us shortly
prove it. We seek to show that for all nodes v in G, u in H:

c
(T+1)
v,G = c

(T+1)
u,H =⇒ b(T)

v = b(T)
u

The antecedent implies the equality of all inputs to the HASH function at time step T , that is:
c
(T)
v,G = c

(T)
u,H , N

(T)
v,G = N

(T)
u,H ,M

(T)
v = M

(T)
u and, importantly, C(T)

v = C
(T)
u . By the definition of

needle node colors, this last equality is rewritten as b(T)
v = b

(T)
u , which proves the refinement.

This tells us that, by transitivity, that ∀G,H ∈ D1∪D2 c(T+1) vG,H a(T). Therefore, by Lemma 2,
if two graphs are deemed non-isomorphic by the WL algorithm at step T , then at step T + 1, DSS-
WL assigns a distinct color to any pair of subgraphs from the respective bags, that is:

b
(T+1)

G1
k

= {{c(T+1)
v,k |v ∈ V 1}} 6= {{c(T+1)

w,h |w ∈ V 2}} = b
(T+1)

G2
h

∀h, k ∈ {1, . . . ,m}

This immediately leads DSS-WL to distinguish between graphs G1, G2 as their corresponding mul-
tisets of subgraph colors are disjoint.

Let us now characterize the expressive power of DS-WL. We start by proving that, under certain
subgraph selection policies, it can be made at least as expressive as the WL test.
Lemma 8. Let π̂ be any augmented subgraph selection policy. DS-WL on π̂-induced bags is at least
as powerful as WL in distinguishing non-isomorphic graphs, i.e., any two non-isomorphic graphs
G1, G2 distinguished by WL are also distinguished by DS-WL when run on the respective π̂-induced
bags.

Proof. We focus on the non-trivial case in which the two graphs have the same number of edges
(and nodes) and policy π̂, on the two graphs, generates bags of same cardinality. Let us remark that
subgraph colors are obtained by DS-WL by running an independent WL procedure on each of them.

Let G1, G2 be two graphs distinguished by WL at round T ≥ 1. Let a1, a2, a1 6= a2 be the
representations WL assigns to the two input graphs at time step T . Also, let us denote by C1 =
{{c1k}}mk=0, C

2 = {{c2k}}mk=0 the multisets of subgraph colors computed by DS-WL on the two input π̂-
bags at round T . In particular, if c10, c

2
0 are the subgraph colors associated with G1

0 = G1, G2
0 = G2,

clearly, c10 = a1, c20 = a2, c10 6= c20.

Now, any other subgraph from any bag has a number of edges smaller than the one in the original
graphs. This implies that, if S is a proper subgraph of G, then WL assigns it a color distinct from
the one assigned to G already at the first round. Then, ∀k = 1, . . . ,m, i = 1, 2, cik /∈ {c10, c20}.
This entails the presence of a color in C1 which is not in C2 (and vice-versa), thus C1 6= C2 which
implies DS-WL distinguishes between the two graphs.

As for DS-WL, the inclusion of the original graphs in the generated bags guarantees a lower bound
on the expressive power of the test, which corresponds to that of the standard WL algorithm.
Nonetheless, there exist families of graphs undistinguishable by WL, which can be are separated by
DS-WL when equipped with policies which do not include the original graph in the induced bags.
Lemma 1 provides examples of them: CSL(n, 2) graphs can be distinguished from any CSL(n, k)
with k ∈ [3, n/2− 1] with either ND, ED, EGO and EGO+ policy. We prove it below.

Proof of Lemma 1. We start with a lemma that reduces the problem to considering a single subgraph
of each CSL graph.

Lemma 9. All node-deleted subgraphs of G = CSL(n, k) are isomorphic. All depth-1 ego-nets of
G = CSL(n, k) are isomorphic.

Proof. For i ∈ {0, . . . , n − 1}, there is an isomorphism from node-deleted subgraphs G − v0 to
G− vi given by mapping node j in G− v0 to node j+ i mod n in G− vi. This same isomorphism
works for mapping the ego-net rooted at v0 to the ego-net rooted at vi.

28

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(a) CSL(8, 2) (left) and CSL(8, 3)
(right)

1

2

3

4

5

6

7 1

2

3

4

5

6

7

(b) Subgraphs from ND over
CSL(8, 2) and CSL(8, 3)

Figure 4: Graphs CSL(8, 2) and CSL(8, 3) (left) and their node-deleted subgraphs (right).

Let the nodes of CSL(n, 2) be denoted v(1)
0 , . . . , v

(1)
n−1 and similarly denote the nodes of CSL(n, k)

as v(2)
0 , . . . , v

(2)
n−1. First, we start with the node-deleted case.

Node-deleted policy. Denote the subgraph G1 = CSL(n, 2) − v(1)
0 and G2 = CSL(n, k) − v(2)

0 .
Due to Lemma 9, it suffices to show that G1 6=1−WL G2.

After deleting the nodes, in G1 we note that v(1)
1 , v

(1)
n−1, v

(1)
2 , and v(1)

n−2 have degree 3 while all other
nodes have degree 4. Also, these degree 3 nodes each have at least one neighbor of degree 3.

In G2, the nodes of degree 3 are v(2)
1 , v

(2)
n−1, v

(2)
k , and v(2)

n−k. However, it can be seen that none of
these nodes have a neighbor of degree 3.

In fact, it suffices to prove that just v(2)
1 has no neighbors of degree 3. To see this, note that v(2)

1

has neighbors v(2)
2 , v

(2)
1+k, and v(2)

n−k+1. The constraints n ≥ 7 and k ∈ [3, n/2 − 1] show that

these neighbors are disjoint from the degree 3 nodes S = {v(2)
n−1, v

(2)
k , v

(2)
n−k}. This is because these

constraints imply that the indices of the degree 3 nodes in S satisfy

3 < n/2 < n− 1 < n

3 ≤ k ≤ n/2− 1

4 < n/2 + 1 ≤ n− k ≤ n− 3.

On the other hand, the indices of the neighbors of v(2)
1 satisfy:

0 < 2 < 3

k < k + 1 ≤ n/2
n/2 + 2 ≤ n− k + 1 < n− 2.

Which together suffice to show that the indices do not overlap. Indeed, 2 is less than all of the indices
of degree 3 nodes. k + 1 is less than n− k, greater than k , and less than n− 1. Finally, n− k + 1
is less than n− 1, greater than k, and greater than n− k.

Thus, v(2)
1 has no degree 3 neighbors, so that 1-WL distinguishes G1 and G2 after two iterations.

EGO policies. Let G1 be the depth-1 ego-net of CSL(n, 2) rooted at v(1)
0 , and let G2 be the depth-1

ego-net of CSL(n, k) rooted at v(2)
0 . This proof works for both the EGO and EGO+ cases, as we

will simply show the degree distribution of G1 and G2 differ. This is because G1 has 6 edges total
— 4 edges from v

(1)
0 to v(1)

n−1, v
(1)
n−2, v

(1)
1 , and v(1)

2 , as well as edges (v
(1)
n−2, v

(1)
n−1) and (v

(1)
1 , v

(1)
2).

However, G2 only has 4 edges — those incident to the root v(2)
0 . The proof that no other edges exist

is the same as the above proof that the nodes of degree 3 in the node-deleted subgraphs of G2 have
no other neighbors of degree 3. As the degree distributions differ, 1-WL can distinguish G1 and G2.

The derivations above are enough to prove the thesis hold for DS-WL under policies ND, EGO and
EGO+. Proposition 7 ensures that these graphs are also distinguished by DSS-WL and allows us to
conclude the proof.

29

We now exhibit an example of a graph pair separated by our variants with ED policy (and undistin-
guishable by WL).

Definition 6 (C6 and 2 × C3). The C6 graph is a 2-regular graph composed by a chordless cycle
of 6 nodes. The 2 × C3 graph is 2-regular and is a graph formed by two disconnected cycles of 3
nodes each (triangles). These graphs are illustrated in Figure 5a.

0

1

2

3

4

5 5

0

1

2

3

4

(a) C6 (left) and 2× C3 (right)

0

1

2

3

4

5 5

0

1

2

3

4

(b) Subgraphs from ED over C6 and
2× C3

Figure 5: Graphs C6, 2× C3 (left) and their edge-deleted subgraphs (right).

It is easy to verify that, when run on this pair, the WL test converges at the first iteration: each node
is assigned a color representing degree 2. This is a consequence of being 2-regular. We now show
that they are indeed distinguished by our variants with ED policy.

Lemma 10. The C6 and 2× C3 are disambiguated by DS-WL and DSS-WL under ED policy.

Proof. We discuss the DS-WL variant; if this is able to distinguish between the two graphs, then
DSS-WL is as well, in light of Proposition 7. We first note that, on each of the two graphs, the
ED policy induces bags of only one isomorphism class (shown in Figure 5b). This means that it is
sufficient to show these two subgraphs are distinguished by WL to prove DS-WL separates them.
We simulate two WL rounds on these subgraphs starting from a constant color initialisation.

(Iter. 1) Colors after the first WL refinement uniquely represent node degrees. Each of the two
subgraphs will therefore contain two nodes with color 1 and four nodes with color 2. The subgraphs
are not yet separated.

(Iter. 2) After the second WL refinement, we note that the number of nodes of color (2, {{1, 2}}) is
two in C6, while this color is absent in 2× C3 because there is no node having both a 1-degree and
a 2-degree node in its neighborhood. At this step the subgraphs are separated.

The proof terminates.

We are now ready to prove Theorem 1.

Proof of Theorem 1. (DSS-WL) Policies ND, ED, EGO, EGO+ are vertex set preserving, in view of
Lemma 7, DSS-WL refines WL under these subgraph selection strategies and we know that there
exists exemplary graph pairs distinguished by DSS-WL under these policies and not by WL. In
particular, Lemma 1 exhibits exemplary pairs for policies ND, EGO, EGO+: these CSL pairs are
indeed indistinguishable by WL (Murphy et al., 2019; Chen et al., 2019). Lemma 10 exhibits another
such exemplary pair for policy ED. This is sufficient to prove the thesis for DSS-WL.

(DS-WL) Let us consider augmented policies N̂D, ÊD, ÊGO, ÊGO+. In view of Lemma 8, these
policies are such that DS-WL refines WL. Additionally, we note that Lemma 1 and Lemma 10
trivially hold also when considering these policies, thus providing counterexamples of graphs undis-
tinguishable to WL but separated by DS-WL under these policies. This allows us to conclude the
proof.

E.2.3 NEURAL COUNTERPARTS

We will now focus on characterizing the relation between the proposed WL variants and neural
counterparts such as the DSS-GNN architecture introduced in the main text, seeking to prove Theo-
rem 2. In this Subsection we always assume to work with a DSS-GNN architecture with GraphConv

30

encoders (Morris et al., 2019) and entry-wise max adjacency matrix aggregation. Accordingly, the
representation for node v in subgraph i is given by:

ht+1
v,i = σ

(
W 1

1 h
t
v,i +W 1

2

∑
u∼iv

htu,i +W 2
1

m∑
j=1

htv,j +W 2
2

∑
w∼v

m∑
j=1

htw,j
)

(5)

where σ is the ReLU non-linearity, ∼i indicates the connectivity over subgraph i and ∼ indicates
the connectivity induced by the aggregated subgraph adjacency matrices. Let us remark that, for all
policies of interest in this work, each edge in the original graph is present in at least one subgraph.
In these cases, ∼ corresponds to the connectivity in the original graph. We conveniently formalize
this intuition in the following definition:

Definition 7 (Edge-covering policies). A subgraph selection policy π is said to be edge covering if
for any graph G = (V,E), ∀ e ∈ E, ∃S = (VS , ES) ∈ π(G) such that e ∈ ES .

Clearly, policies ND, ED, EGO(+) are all edge-covering. Let us now show that in the case of edge-
covering policies, there exists a DSS-GNN architecture with layers in the form of Equation (5) that,
when working on graphs of bounded size, can “simulate” the color refinement steps of the DSS-WL
algorithm.

Lemma 11. Let G = {{Gi = (Vi, Ei)}}mi=1 denote the bag generated by an edge-covering selection
policy on any G from a family F of graphs with bounded size, optionally endowed with node labels
from a finite support. Let c(T)

v,k be the color assigned by DSS-WL to node v in subgraph k, after
T < ∞ iterations. There exists a DSS-GNN modelM with D = 10T layers of the form described
in Equation (5) such that c(T)

v,k is uniquely represented by a one-hot encoding h(D)
v,k , the representation

for node v in subgraph k computed by such a model.

Proof. We will prove the lemma by describing how to parameterize the DSS-GNN layers in a way
to simulate the DSS-WL color refinement step on each subgraph.

(Preliminaries) We assume to work with finite graphs whose size is upper-bounded by positive inte-
ger M ∈ N and whose degree is upper-bounded by N ∈ N. From these assumptions it immediately
follows that any employed subgraph selection policy generates bags of bounded cardinalities, whose
subgraphs are finite graphs with size upper-bounded by M and degree upper-bounded by N . Let us
denote with B < ∞ the maximum possible bag cardinality under the considered selection policy
on F . Additionally, if initial node labels are present, it is assumed that they are defined over a finite
support. For a DSS-GNN to simulate color refinement steps, it is necessary to encode colors in
vector/matrix form. Under the aforementioned boundedness assumptions, at any step, each of the
four inputs in the DSS-WL color refinement equation belongs to a finite set of bounded size. The
domain of the HASH function is therefore represented by the cross-product of such these sets and is
therefore finite and of bounded size. Due to the injectiveness of HASH, its image must therefore be
finite and bounded as well. The application of this injective function effectively computes a unique
representation of the inputs by assigning them a color.

(Encoding) Given these premises, it is clear that, at each time step t, including t = 0, it is possible
to represent colors as one-hot vectors of proper dimension without losing any information. This
allows the application of our DSS-GNN model. In the following, we indicate with t ∈ N a time
step in the DSS-WL procedure, and with dt ∈ N the corresponding layer of the described DSS-
WL model. Note that, in general, dt ≥ t as more than one layer is required to simulate one color
refinement step. Let c(t)v,k be the color assigned to node v on subgraph k at time-step t and h(dt)

v,k be
its representation computed by our DSS-GNN model, of dimension adt . At time step t = 0, each
node in each subgraph is assigned a constant color c(0)

v,k = c̄; if initial colors are available, they are

retained. We consider h(d0)
v,k = h

(0)
v,k to be a proper one-hot encoding of these initial colors. For a

color refinement from time step t to t+ 1 we consider inputs to layer dt to be one-hot encoded. The
refinement is simulated with layers dt to dt+1, where the final output of these is a one-hot encoding
uniquely representing the result of the HASH function.

(Computation) Starting from the one-hot color representation in input to layer dt, the refinement
step is implemented by: (i) computing unique representations for all the four inputs to the HASH

31

function; (ii) simulating the HASH function by mapping them to an output, unique, one-hot en-
coding. Let us start by describing step (i). An important observation is that the summation is
an injective aggregator over multisets when elements are represented by one-hot encodings. In
other words, we can uniquely represent a multiset of one-hot encoded elements by simply sum-
ming its members. This implies that there exists one DSS-GNN layer which computes a unique
representation for each of the first three inputs to the HASH function: c(t)v,k, N

(t)
v,k, C

(t)
v . In this

layer, each matrix W has dimension 3 · adt × adt and b has dimension 3 · adt . In particular:
W 1

1 = [I,0,0],W 1
2 = [0, I,0],W 2

1 = [0,0, I],W 2
2 = 0, b = 0, where [·, ·] indicates vertical

concatenation.

In output from this layer are vectors in the form h
(dt+1)
v,k = [h

(dt)
v,k , h

(dt,N)
v,k , h

(dt,C)
v], with the last

two components representing unique encodings of, respectively, inputs N (t)
v,k, C

(t)
v . In order to also

compute a unique representation for the fourth input (M (t)
v), we cannot directly apply summation

on the just computed h(dt,C)
v , because these are not one-hot encoded anymore, and summation is,

generally, not injective. To overcome this, we employ additional layers to first uniquely encode
each h(dt,C)

v,k with a one-hot scheme so that the original neighborhoods N (v) would be uniquely
encoded by the summation over them, inherent in the DSS-GNN layer. This one-hot encoding
scheme is possible because there is only a finite number of multisets of size m ≤ B that can
be constructed from a finite color palette of cardinality adt . Additionally, this encoding can be
computed by stacking 4 DSS-GNN layers with ReLU activations as shown by the following:

Lemma 12. Let H be a finite set. Let elements in H be uniquely encoded by h(·). There exists
a 4-layer DSS-GNN model which computes the map µ : h(a) 7→ e, a ∈ H with e being a unique
one-hot encoding for element a.

Proof. We consider an ordering relation < determining an overall sorting s of the elements in H.
This can be obtained, for example, by a lexicographic ordering of the elements in the encodings
h(·). This sorting associates any element with an integer index, that is s : H → N, s : a 7→ i. We
can therefore denote each (encoded) element with hi, i = 1, . . . , |H|. We seek to implement the
mapping µ : hi 7→ ei, such that: ei ∈ {0, 1}|H| and (ei)j = 1 if j = i, (ei)j = 0 otherwise.

We define the dataset D = {(hi, ei)}Hi=1. This dataset satisfies Assumption 3.1 in Yun et al. (2019):
all hi’s are distinct and labels ei’s are in [−1,+1]dy , dy = |H|. Moreover we have that ∀i, ei ∈
0, 1dy . Thus, according to Proposition 3.2 in the same work, there exists a 4-layer ReLU network
parameterised by θ and with Ω(

√
|H|+|H|) neurons which perfectly fitsD. This network computes

µ and is exactly implemented by a 4-layer DSS-GNN model with matrices W 1
2

(l)
,W 2

1
(l)
,W 2

2
(l)

=

0, l = 1, . . . , 4 and θ = (W 1
1

(l)
, b(l))

4

l=1.

We invoke Lemma 12 with H being the (finite) set of all possible B-size multisets over node col-
orings h(dt), which are from a finite palette of size adt . Accordingly, there exists a stacking of
4 DSS-GNN layers such that h(dt+5)

v,k = [h
(dt)
v,k , h

(dt,N)
v,k , h̄

(dt,C)
v], with h̄(dt,C)

v being the one hot

encoding of h(dt,C)
v , dimension et,C . If (W̃ 1

1

(l)
, b̃(l))

d+5

l=d+1 are the parameters from Lemma 12 one-

hot encoding h(dt,C)
v , then these layers are obtained simply by W 1

1
(l)

= [[I|0], [0|W̃ 1
1

(l)
]], bl =

[0, b̃(l)],W 1
2

(l)
,W 2

1
(l)
,W 2

2
(l)

= 0. Here [·|·] indicates horizontal concatenation and I is always of
size 2·adt×2·adt . Overall, each h(dt+5)

v,k has dimension adt+5 = (2·adt)+et,C . Importantly, we no-

tice that component h̄(dt,C)
v is computed for node v but independently of k, and is thus shared across

all subgraphs. Layer dt+6 now computes the encoding ofM (t)
v . Each weight matrix has dimension

(adt+5 + et,C)× adt+5 with: W 1
1 = [I,0] (I size adt+5), W 1

2 ,W
2
1 = 0,W 2

2 = [0, [0⊥| 1
mI]] (0⊥

size et,C × (2 · adt), I size et,C), b = 0 ∈ Radt+5 .

Now, h(dt+6)
v,k = [h

(dt)
v,k , h

(dt,N)
v,k , h̄

(dt,C)
v , h̄

(dt,M)
v], of dimension adt+6 = adt+5 + et,C , constructed

as the concatenation of unique representations of the inputs to the HASH function. It is only left
to “simulate” the application of this last. We do this by computing a one-hot encoding of vector

32

h
(dt+6)
v,k . As already discussed, this encoding is possible due the fact that HASH is an injection with

domain of finite and bounded cardinality. In other words, vectors h(dt+6)
v,k can only assume a finite,

bounded number of distinct values. Again, this encoding is computable by 4 DSS-GNN layers, as
per Lemma 12 invoked considering the (finite) set of all possible colorings attainable by encodings
h(dt+6).

Finally, we have that h(dt+1)
v,k = h

(dt+10)
v,k . This construction can be arbitrarily repeated to exactly

simulate T iterations of the DSS-WL color refinement step with D = 10T layers, which concludes
the proof.

The following Lemma shows that there exists a DS-GNN architecture with layers of the form in
Equation (5) that, when working on graphs of bounded size, can “simulate” the color refinement
steps of the DS-WL algorithm.

Lemma 13. Let G = {{Gi}}mi=1 denote the bag generated by a subgraph selection policy applied on
any G from a family F of graphs with bounded size. Let c(T)

v,k be the color assigned by DS-WL to
node v in subgraph k, after T iterations. There exists a DS-GNN modelM with D = 5T layers
of the form described in Equation (5) such that c(T)

v,k is uniquely represented by a one-hot encoding

h
(D)
v,k , the representation for node v in subgraph k computed by such a model.

Proof. The proof closely follows the one for Lemma 11; we work in the same regime (finite graphs
of bounded size and degree, initial labels from a finite support) and assume the network encodes
node colors with a proper one-hot encoding at each refinement step being simulated. The difference
is that, in this case, the described DS-GNN model always has parameters W 2

1 ,W
2
2 = 0 and does

not need to encode the HASH inputs C(t)
v ,M

(t)
v (not present in its update equations).

Let c(t)v,k be the color assigned to node v on subgraph k at time-step t and h(dt)
v,k be its representation

computed by our DS-GNN model, of dimension adt and properly one-hot encoded. We seek to
describe a stacking of DS-GNN layers producing h(dt+1)

v,k , a unique, one-hot encoding of color c(t+1)
v,k .

Once more, since summation is an injective aggregator over multisets when elements are represented
by one-hot encodings, there exists one DS-GNN layer which computes a unique representation for
the two inputs to the HASH function: c(t)v,k, N

(t)
v,k. In this layer, each matrix W has dimension

2 · adt × adt and b has dimension 2 · adt . In particular: W 1
1 = [I,0],W 1

2 = [0, I], b = 0 where [·, ·]
indicates vertical concatenation.

In output from this layer are vectors in the form h
(dt+1)
v,k = [h

(dt)
v,k , h

(dt,N)
v,k], with the last component

representing a unique encoding of N (t)
v,k. In order to obtain h(dt+1)

v,k it is only left to one-hot encode

h
(dt+1)
v,k . We perform this operation with a stacking of 4 DS-GNN layers leveraging only on matrix
W 1

1 (in module L1) and bias b. This stacking is described by Lemma 12, invoked considering the
(finite) set of all possible colorings attainable by encodings h(dt+1).

Let us now move to prove Theorem 2 from the main text.

Proof of Theorem 2. (DS(S)-GNN v DS(S)-WL) We will directly describe a DSS-GNN architecture
satisfying the requirements under edge-covering policies. According to Equation (2), a DSS-GNN
architecture computes a representation for a graph in input as: hG = Esets ◦Rsubgraphs ◦Esubgraphs(G).
Let T be the time step at which DSS-WL (resp. DS-WL) distinguishes two input graphs G1, G2. At
this round, the overall coloring is such that the multisets of subgraph colors for the two graphs are
distinct:

{{c(T)

G1
k
}}mk=1 6= {{c

(T)

G2
h
}}mh=1

where c(T)

Gij
generally indicates the color computed for subgraph j of graph Gi: HASH({{c(T)

v,j |v ∈
V i}}). Now, let Esubgraphs be the module obtained by the stacking described in Lemma 11 (resp.

33

Lemma 13). We know that this module uniquely encodes each subgraph node color c(T)
v,j with one-

hot representations h(dT)
v,j . Therefore, it is only left to describe modules Rsubgraphs, Esets in a way to

injectively aggregate such representations into an overall graph embedding.

Given that subgraph node colors are (uniquely) represented by one-hot encodings, the required
Rsubgraphs can be simply obtained by summation over node representations on each subgraph. This
is because summation is an injective aggregator when multiset elements are described in a one-hot
fashion. Let us generally refer to the computed subgraph representations as hj .

Let us finally describe module Esets. The graphs of interest have a number of nodes upper-bounded
by a positive integer and so hj’s uniquely represent bounded-sized multisets of colors from a finite
palette. The set of all possible such multisets is finite, so it is possible to compute a one-hot en-
coding for these subgraph representations with a 4-layer ReLU MLP applied in a siamese fashion.
Lemma 12 ensures the existence of such a network as the described stacking of DSS-GNN layers ef-
fectively boils down to a Siamese MLP. This would constitute the first 4 layers ofEsets. To conclude,
one last layer applying summation to these one-hot encodings would suffice to output an embedding
uniquely describing the multiset of subgraph colors.

(DS-WL v DS-GNN) As for DS-GNN and DS-WL, we show in the following that, if a DS-GNN
distinguishes two graphs, then DS-WL also distinguishes these two graphs. Suppose DS-GNN
distinguishes between G1 and G2. If the bags SG1 and SG2 are of different sizes, then DS-WL
separetes the two graphs as well because it hashes multisets of different sizes to different outputs.
Assume they have the same size. Letting 1-WL: G → Σ denote the 1-WL graph coloring function
and MPNN : G → Σ denote the MPNN base graph encoder employed by DS-GNN, we have:

{{MPNN(G1
1), . . . ,MPNN(G1

m)}} 6= {{MPNN(G2
1), . . . ,MPNN(G2

m)}} (6)

By Morris et al. (2019); Xu et al. (2019), we know that 1-WL v MPNN, i.e. that 1-WL(H1) =
1-WL(H2) implies that MPNN(H1) = MPNN(H2) for any graphs H1 and H2. Thus, Lemma 2
tells us that

{{1-WL(G1
1), . . . , 1-WL(G1

m)}} 6= {{1-WL(G2
1), . . . , 1-WL(G2

m)}}. (7)

Hence, the final readout of DS-WL maps these multisets to different values, so that DS-WL distin-
guishes G1 and G2.

This is enough to prove the second part of the thesis, terminating the overall proof.

F PROOFS FOR SECTION 3.3: DESIGN CHOICE EXPRESSIVENESS

This appendix section contains proofs for Section 3.3. First, we note that we use DS-GNN and DS-
WL interchangeably in proofs, as they are equivalent in power for distinguishing graphs (as shown
in Theorem 2).

F.1 PROOFS OF DSS VERSUS DS

Proof of Prop 1. That DSS-GNN is at least as powerful as DS-GNN follows directly from the def-
inition. For any DS-GNN, there is a DSS-GNN with L2 = 0 in each layer that implements the
DS-GNN. To show that DSS-GNN is strictly more powerful, we provide two examples.

A trivial example. Consider the subgraph selection policy SE : G = (V,E) 7→ {(V, {e}) | e ∈ E}.
Each subgraph is a single edge from the original graph. Now, let G1 be the path on 4 nodes, and let
G2 be the 3-star. In other words, G1 has a vertex set of {1, 2, 3, 4} and edges {(1, 2), (2, 3), (3, 4)},
while G2 has a vertex set of {1, 2, 3, 4} and edges {(1, 2), (1, 3), (1, 4)}.
Now, we show that DS-GNN cannot distinguish G1 and G2. Note that the bags are of the same
size: |SE(Gi)| = 3. Moreover, any other subgraph is a single edge, and these single edges are
isomorphic and hence 1-WL equivalent. Thus, the multisets of subgraph colors are equal

{{1-WL(H) : H ∈ SE(G1)}} = {{1-WL(H) : H ∈ SE(G2)}}, (8)

so that DS-WL cannot distinguish these graphs, and hence DS-GNN cannot distinguish these graphs
by Theorem 2.

34

To see that DSS-GNN can distinguish these graphs, we let L1(A,X) = 0 and L2(A,X) =
(A)

(
1
6X
)
. These operations are simple and can be implemented by MPNNs with sum pooling;

for instance, GIN (Xu et al., 2019) and GraphConv (Morris et al., 2019) can both implement L1 and
L2. Letting the initial node features in each subgraph i be X(0)

i = ~1 = [1 . . . 1]
>, we compute the

node features after one layer as

X
(1)
i = L1(Ai,~1) + L2

∑
j

Aj ,
∑
j

~1

 (9)

= 0 + L2
(

2A, 3~1
)

(10)

= A~1. (11)

Thus, the kth component of X(1)
i is the degree of node k. Since G1 has no nodes of degree 3 while

G2 has one node of degree 3, these node features differ between G1 and G2. Thus, DSS-GNN
distinguishes these two graphs. This is because the multiset of node features in G1 differs from the
multiset of node features in G2 after this iteration, so a final set pooling across nodes can map these
two graphs to different outputs (for instance, a max pooling outputs 2 for G1 and 3 for G2).

This example is trivial because it is easy to make a change to the policy that would allow DS-GNN
to distinguish these two graphs. Since the two original graphs have different degree distributions,
they are directly distinguished by 1-WL. Thus, adding the original graph to the bags of subgraphs
would allow DS-GNN to distinguish these graphs.

A strengthened result. For an extension of the above example, we consider the policy ŜE that is
given by adding the original graph to the SE policy, so ŜE(G) = SE(G) ∪ {G}. For this policy,
we can again show that DS-GNN cannot distinguish a pair of graphs that DSS-GNN can, though we
need to allow a slightly different type of aggregation for DSS-GNN. In particular, when computing
the features for subgraph i, we use an L2 that is mentioned in Section 2.1: L2

(∑
j Aj ,

∑
j 6=iXj

)
.

Now, consider the pair of non-isomorphic graphs: G1 is two triangles C3 +C3 andG2 is the 6-cycle
C6. Denote the subgraph corresponding to the single edge (i, j) as G(i,j), and the corresponding
adjacency as A(i,j) ∈ {0, 1}6×6.

We show that DS-GNN cannot distinguishG1 andG2. First, note that the bag is of size |ŜE(Gi)| =
7 for each graph — they each have 6 edges and the original graph adds one more element to the
bag. Note that G1 and G2 are regular of the same number of nodes and degree, so they are 1-WL
equivalent. As any other subgraph is a single edge, we once again know that these single edges are
isomorphic and thus 1-WL equivalent. Hence, the multisets of subgraph colors are equal

{{1-WL(H) : H ∈ ŜE(G1)}} = {{1-WL(H) : H ∈ ŜE(G2)}}, (12)

so that similarly to the previous example, DS-GNN cannot distinguish these graphs.

Now, we show that DSS-GNN can distinguish G1 and G2. We give a choice of parameters for
DSS-GNN that distinguishes these graphs. Let the input node features be all one, so X(0) = ~1 =
(1, . . . , 1) ∈ Rn×1. Let the first layer graph encoders be given by:

L1(A,X) = AX, L2(A,X) = 0 (13)

Once again, these two graph encoders can be implemented by both GIN and GraphConv. Then the
kth element of the representation of the nodes of A(i,j) after one layer is:

X
(1)
(i,j),k = (L(A,X))

(i,j)
k = L1(A(i,j),~1)k + L2

A+
∑

(i,j)∈E

A(i,j), ~1 +
∑

(i,j)∈E

~1

k

(14)

= L1(A(i,j),~1)k (15)

= (A(i,j)~1)k (16)
= 1k∈{i,j}. (17)

35

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 6: The Rook’s graph (left) and Shrikhande graph (right) (Arvind et al., 2020) are non-
isomorphic strongly regular graphs of the same parameters. They thus cannot be distinguished
by 3-WL.

In other words, the feature on node k for A(i,j) is one if k is i or j, and zero otherwise. Also, a
similar computation shows that subgraph G corresponding to the original graph has node feature 2~1
after this layer.

Now, let the second layer graph encoders be:

L1
(2)(A,X) = 0, L2

(2)(A,X) =

(
1

3
A

)(
−X + 4~1

)
, (18)

where L2 takes the standard sum pooled
∑
j Aj as well as the modified pooled

∑
j 6=iXj . These

can be implemented by GraphConv with bias terms. Then the kth element of the representation of
the nodes of A(i,j) after the second layer is:

X
(2)
(i,j),k = L2

(2)

A+
∑

(i,j)∈E

A(i,j), X
(1)
G +

∑
(v,w)∈E\{(i,j)}

X
(1)
(v,w)

k

(19)

= L2
(2)

3A, 2~1 +
∑

(v,w)∈E\{(i,j)}

X
(1)
(v,w)

k

(20)

= L2
(2)

(
3A, Z(i,j)

)
k

(21)

=
(
A(−Z(i,j) + 4~1)

)
k

(22)

where Z(i,j),l is 4 if l /∈ {i, j} and is 3 if l ∈ {i, j}. Thus, −Z(i,j),l + 4~1 is 0 if l /∈ {i, j} and 1 if
l ∈ {i, j}. We show that X(2)

(i,j) differs between G1 and G2.

For G1, let k be the other node in the triangle that node i and j are in. Then X(2)
(i,j),k = 2. On the

other hand, for G2, there is no value of k such that X(2)
(i,j),k is 2. This is because there is no node k

that is adjacent to both i and j (there are no triangles in G2). Thus, we have shown that DSS-GNN
distinguishes these two graphs after the second layer, and we are done.

F.2 PROOFS OF INCREASING ENCODER EXPRESSIVENESS

First, we introduce certain graphs that provide useful examples for our proofs, and that have been
used to study expressiveness of graph algorithms more generally.

Circulant Skip Link Graphs. For parameters n ≥ 7 and k ∈ [2, n − 2], CSL(n, k) is a 4-regular
graph with vertex set V = {0, . . . , n − 1} and edges between node i and i ± 1 mod n as well as
between i and i± k mod n (Murphy et al., 2019). For an infinite subset of non-isomorphic pairs of
these graphs, we prove that DSS-GNN with two different policies can distinguish pairs that 1-WL
cannot.

Rook’s graph and Shrikhande graph. We also introduce a particular pair of commonly-used
example graphs that will be useful for us. Figure 6 illustrates the 4-by-4 Rook’s graph and the

36

0

1

39

11

0

1

57

11

(a) Depth 1

0

1

2

3

4

6

8

9

10

11

0

1

2

4

5

6

7

8

10

11

(b) Depth 2

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

(c) Depth 3

Figure 7: Ego-nets of CSL(12, 3) (left) and CSL(12, 5) (right) for depths 1, 2, and 3. These are
used in Proposition 8.

Shrikhande graph. These are non-isomorphic graphs that are strongly regular of the same parame-
ters, so they cannot be distinguished by 3-WL / 2-FWL (Arvind et al., 2020; Balcilar et al., 2021).

We number the nodes for ease of reference in the below proofs. For the either graph, let the vertex
set be V = {(x, y) : x ∈ {0, 1, 2, 3}, y ∈ {0, 1, 2, 3}}, so each of the 16 nodes are viewed as a point
on a grid in the plane. For each node (x, y) ∈ V , the Rook’s graph has edges ((x, y), (x′, y)) for
x′ 6= x and ((x, y), (x, y′)) for y′ 6= y. The Shrikhande graph has edges ((x, y), (x, y ± 1 mod 4)),
((x, y), (x± 1 mod 4, y)), and ((x, y), (x± 1 mod 4, y ± 1 mod 4)). We number the nodes on the
grid from left to right then top to bottom, so node 1 is (0,3), node 2 is (1,3), node 5 is (0,2), node 6
is (1,2), and so on.

Proof of Prop 2. Note that the generalization of DS-GNN to 3-WL encoders is straightforward, as
we simply use the graph representation vectors from the readout of the 3-WL encoder as the sub-
graph representations in the DeepSets module. In other words, letting 3-WL-GNN(G) be the final
coloring of G that is obtained from a GNN that is equivalent to 3-WL, we apply a DeepSets module
to {{3-WL-GNN(Gi) : Gi ∈ SG}} for DS-GNN with a 3-WL encoder. This DS-GNN with 3-WL is
at least as strong as DS-GNN with 1-WL since 3-WL is at least as strong as 1-WL. Also, DS-GNN
with 3-WL is at least as strong as 3-WL since the original graph is included in S.

To show that DS-GNN with 3-WL is strictly stronger than the other two models, we show that it
can distinguish the Rook’s graph and the Shrikhande graph, which the other two models cannot.
Recall that 3-WL cannot distinguish the two because they are both strongly regular graphs of the
same parameters (Arvind et al., 2020).

Now, note that all depth-1 ego-nets of the Rook’s graph consist of two disjoint triangles with a root
node that is connected to all nodes. All depth-1 ego-nets of the Shrikhande graph consist of a 6-cycle
with a root node that is connected to all nodes. It is easy to see that 1-WL cannot distinguish these
ego-nets, as 1-WL cannot distinguish two disjoint triangles from a 6-cycle. Thus, DS-GNN with the
depth-1 ÊGO or ÊGO+ policy cannot distinguish the two graphs.

On the other hand, 3-WL can distinguish these ego-nets as 3-WL can distinguish two disjoint tri-
angles from a 6-cycle; for instance, this can be seen due to 3-WL being able to count triangles at
initialization (Chen et al., 2020).

37

F.3 PROOFS OF POLICY CHOICE AND EXPRESSIVENESS

Before restricting to strongly regular graphs, we give an example that shows how the power of the
EGO policy can depend in interesting ways with the depth — increasing ego-net depth may either
increase or decrease the expressivity of DS-GNN.

Proposition 8. Our DS-GNN model with depth-1 or depth-3 EGO policies do not distinguish
CSL(12,3) and CSL(12,5), while the depth-2 EGO policy does distinguish them.

Proof of Prop 8. The depth-1, depth-2, and depth-3 ego-nets of CSL(12, 3) and CSL(12, 5) are all
isomorphic, so DS-GNN with a 1-WL encoder can distinguish the two graphs if and only if 1-WL
can distinguish the ego-nets. The ego-nets are plotted in Figure 7.

The depth-1 ego-nets of both CSL(12, 3) and CSL(12, 5) are K1,4 — the star with one root node
of degree 4 and four nodes of degree 1 connected to the root. As these are isomorphic, 1-WL does
not distinguish any subgraphs, so our DS-GNN cannot distinguish CSL(12, 3) and CSL(12, 5) with
depth-1 EGO policy.

The depth-2 ego-nets are displayed in Figure 7. It can be seen that the depth-2 ego-nets have different
degree distributions: for instance, that of CSL(12, 3) has degree 3 nodes while the ego-nets of
CSL(12, 5) do not have any degree 3 nodes. Thus, 1-WL distinguishes these ego-nets, and hence
DS-GNN does as well with the depth-2 EGO policy.

As both CSL(12, 3) and CSL(12, 5) have diameter 3, the depth-3 ego-nets are in both cases just the
original graph. As both graphs are regular of the same number of nodes and same degree, 1-WL
does not distinguish the subgraphs, so DS-GNN cannot distinguish CSL(12, 3) and CSL(12, 5) with
depth-3 EGO policy.

F.4 STRONGLY REGULAR GRAPH PROOFS

In this Section, we prove Proposition 3 on the power of different policies for distinguishing strongly
regular graphs.

F.4.1 ND AND EGO+ ON STRONGLY REGULAR GRAPHS

Lemma 14. DS-GNN with the ND policy can distinguish any strongly regular graphs of different
parameters, but cannot distinguish any strongly regular graphs of the same parameters.

Proof. We show that the 1-WL algorithm converges to the same coloring of any node-deleted sub-
graph of a strongly regular graph in at most 3 iterations, and that the coloring only depends on the
strongly regular parameters. Let G be a strongly regular graph of parameters (n, k, λ, µ), meaning
that G has n nodes, is regular of degree k, any two adjacent vertices have λ common neighbors, and
any two non-adjacent vertices have µ common neighbors. We step through the 1-WL iterations on
the node-deleted subgraph G− u:

• Iteration 1: Initialize each node to have color a.

• Iteration 2: Degree k − 1 nodes are colored b and degree k nodes are colored c.

• Iteration 3: All degree k − 1 nodes are colored d, as they each had color b and have λ b
neighbors and (k − 1− λ) c neighbors. To see this, note that these nodes were adjacent to
the deleted node u in the original graph G, so they had exactly λ common neighbors with
u. Since the neighbors of u are now degree k − 1 in G − u, they had color b. Thus, there
are exactly λ b neighobrs, and the remaining color is c, so there are also exactly (k−1−λ)
c neighbors.

Also, all degree k nodes are colored e, as they had color c and have µ b neighbors and
(k− µ) c neighbors. This is because these nodes are not adjacent to u in the original G, so
they have exactly µ common neighbors with u in G. Thus, they have exactly µ b neighbors
and (k − µ) c neighbors.

38

As the colors of iteration 2 and 3 are isomorphic, 1-WL has converged. Since this coloring is the
same for any node-deleted subgraphs of any strongly regular graph of the same parameters, DS-WL
and hence DS-GNN cannot distinguish any strongly regular graphs of the same parameters.

Likewise, this coloring differs for any strongly regular graphs G1 and G2 of different parameters.
The coloring differs at iteration 1 if n differs, at iteration 2 if k differs, and at iteration 3 if λ or µ
differ. Thus, DS-WL and hence DS-GNN is able to distinguish any two such graphs.

Lemma 15. DS-GNN with the depth-n ÊGO+ policy can distinguish any strongly regular graphs
of different parameters, but cannot distinguish any strongly regular graphs of the same parameters.

Proof. Consider a depth-n ego-net rooted at u. This proof is similar to that of the ND case in
Lemma 14. We compute the 1-WL iterations:

• Iteration 1: u has color a1 and all other nodes have color b

• Iteration 2: u has color a2 (as it is the only node with previous color a1).

The k neighbors of u have color c (they each have previous color b, have the one neighbor
u of color a1, and have k − 1 neighbors of the remaining color b).

The n − k − 1 non-neighbors of u have color d (they each have previous color b, have no
neighbors of color a1, and thus have k neighbors of color b).

• Iteration 3: u has color a3 (it is the only node with previous color a2)

The k neighbors of u have color e. They each had previous color c, have one neighbor of
color a2, have λ neighbors of color c because they are adjacent to u and all neighbors of u
had color c, and have k − λ− 1 neighbors of the remaining color d.

The n−k−1 non-neighbors of u have color f (they had previous color d, have no neighbors
of color a2, have µ neighbors of color c because they are non-adjacent to u and all neighbors
of u had color c, and have k − µ neighbors of the remaining color d).

This coloring is stable, so the algorithm terminates. Note that this coloring only depends on the
strongly regular parameters. Once again, it differs for any strongly regular graphs of different pa-
rameters, and is the same for any strongly regular graphs of the same parameters. Also, note that
besides the unique color of the root node u, this coloring is the same as that of the 1-WL coloring of
the node-deleted graph G− u.

F.4.2 ED ON STRONGLY REGULAR GRAPHS

Lemma 16. 3 iterations of 1-WL on any edge-deleted subgraph of a strongly regular graph gives
a coloring that only depends on the strongly regular parameters. This coloring distinguishes any
strongly regular graphs of different parameters.

Proof. Say we have deleted edge (u1, u2). The 1-WL iterations are as follows:

• In iteration 1, each node has initial color a.

• In iteration 2, we have two nodes of degree k − 1 that are colored b, i.e. u1 and u2. There
are n− 2 nodes of degree k that are colored c.

• In iteration 3, we have two nodes of degree k − 1 that are colored d (because they are both
only adjacent to degree k nodes previously colored c). For the degree k nodes, there are
three possible colors, which we call e, f, g: the color e is for nodes adjacent to 2 b nodes
and k− 2 c nodes, f is for nodes adjacent to 1 b node and k− 1 c nodes, and g is for nodes
adjacent to k c nodes. We show that the number of colors e, f, and g only depend on the
strongly regular graph parameters.

39

First, there are λ nodes of color e, as the nodes adjacent to 2 b nodes are common neighbors
of u1 and u2, which are adjacent in the original graphG. By definition there are λ common
neighbors of u1 and u2.

Next, there are 2(k − 1− λ) nodes of color f. This is because each node of color f is only
adjacent to one of u1 or u2. Each of u1 and u2 has (k − 1 − λ) neighbors that are not in
common with the other, so there are in total 2(k − 1− λ) nodes of color f.

The only other choice is color g, so we can compute the number by subtracting all the other
color counts from the total number of nodes n. There are thus n− 2− λ− 2(k− 1− λ) =
n+ λ− 2k nodes of color g.

It is clear that ifG1 andG2 are strongly regular graphs that differ in any of the n, k, or λ parameters,
then three iterations of 1-WL distinguishes due to the above coloring differing. Now, if G1 and G2

differ in the µ parameter, the same argument holds, because the µ parameter for a strongly regular
graph is related to the other parameters by

(n− k − 1)µ = k(k − λ− 1) (23)

(See Theorem 1.1 in Cameron (2004)). Thus, G1 and G2 must differ in at least one of n, k, or λ,
and hence they are distinguished by 3 iterations of 1-WL.

Lemma 17. The 4 × 4 Rook’s graph and the Shrikhande graph are distinguished by DS-GNN and
DSS-GNN with the ED policy.

Proof. We prove that DS-GNN can distinguish these two graphs by directly computing 1-WL color-
ings of edge-deleted subgraphs. It can be checked computationally that all edge-deleted subgraphs
of the Rook’s graph are isomorphic, and likewise all edge-deleted subgraphs of the Shrikhande graph
are isomorphic. Thus, it suffices to show that a 1-WL coloring of one edge-deleted subgraph of the
Rook’s graph differs from a 1-WL coloring of one edge-deleted subgraph of the Shrikhande graph.

We use the numbering of nodes as we defined in the beginning of Appendix F.2. Each node starts
with an initial color that we denote ‘a’. See Tables 9 and 10 for the coloring, which differs for the
two graphs at iteration 4 (as an aside, note that the first 3 iterations were already computed in the
proof of Lemma 16). Thus, these two graphs are distinguished by DS-GNN, and hence DSS-GNN,
with the ED policy.

Node Iter 1 2 3 4

1 a b d h
2 a b d h
3 a c e i
4 a c e i
5 a c f j
6 a c f j
7 a c g k
8 a c g k
9 a c f j

10 a c f j
11 a c g k
12 a c g k
13 a c f j
14 a c f j
15 a c g k
16 a c g k

HASH(M(v)) M(v)

a initialize
b (a, aaaaa)
c (a, aaaaaa)
d (b, ccccc)
e (c, bbcccc)
f (c, bccccc)
g (c, cccccc)
h (d, eefff)
i (e, ddeggg)
j (f, dfffgg)
k (g, effggg)

Table 9: 1-WL on an edge-deleted subgraph of the Rook’s graph, where we delete edge (1,2). The
table on the right showsM(v), which is a tuple containing the current color of node v along with
the multiset of neighbor colors. In each iteration of 1-WL,M(v) is updated to HASH(M(v)).

40

Node Iter 1 2 3 4

1 a b d h
2 a b d h
3 a c f j
4 a c f j
5 a c f l
6 a c e m
7 a c f l
8 a c g n
9 a c g k

10 a c g k
11 a c g k
12 a c g k
13 a c e m
14 a c f l
15 a c g n
16 a c f l

HASH(M(v)) M(v)

a initialize
b (a, aaaaa)
c (a, aaaaaa)
d (b, ccccc)
e (c, bbcccc)
f (c, bccccc)
g (c, cccccc)
h (d, eefff)
j (f, dfffgg)
k (g, effggg)
l (f, defggg)

m (e, ddffgg)
n (g, ffffgg)

Table 10: 1-WL on an edge-deleted subgraph of the Shrikhande graph, where we delete edge (1,2).

F.5 PROOF OF PROPOSITION 3

With the above lemmas for different policies we may formally prove Proposition 3.

Proof of Prop 3.
(1) Lemmas 14 and 15 show that ND and depth-n ÊGO+ can distinguish strongly regular graphs of
different parameters. Lemma 16 shows the same for ED.

(2) is proven in Lemmas 14 and 15.

(3) is directly proven by Lemma 17, as DS-GNN with ED distinguishes the Rook’s graph and the
Shrikhande graph, which are strongly regular of the same parameters.

Finally, note that 3-WL cannot distinguish strongly regular graphs of the same parameters (Arvind
et al., 2020), so ED is strictly stronger than 3-WL. While we have only provided one pair of strongly
regular graphs of the same parameters that ED can distinguish, the general case for all strongly
regular graphs is hard; while a lot of work has gone into distinguishing non-isomoprhic strongly
regular graphs, there is no known polynomial-time algorithm to do so (Babai et al., 2013).

G COMPLEXITY

G.1 FORWARD PASS

Table 11: Complexity of graph networks that are more expressive than 1-WL. ∆max denotes the
maximum degree over all nodes.

PPGN 3-IGN 3-GNN GSN CWN Ours

Time O(n3) O(n3) O(n4) O (n∆max) O
(∑2

p=1 np(Bp + 2
(
Bp
2

)
)
)

O (|S|n∆max)

Space O(n2) O(n3) O(n3) O (n+ n∆max) O
(
n+

∑2
p=1 np(1 +Bp + 2

(
Bp
2

)
)
)
O (|S|(n+ n∆max))

Here, we analyze the complexity of our method, when using MPNNs as graph encoders, compared
to other graph networks that are more expressive than 1-WL. In Table 11 we summarize the results.
We assume that the feature dimensionality is a constant.

For dense graphs, our method requires O(|S|n2) time, as each of the |S| subgraphs is processed
using a MPNN of time complexity O(n2). When |S| = O(n) as in the case of node-deleted and
ego-net policies, the time complexity is O(n3), just as in the case of PPGN (Maron et al., 2019a)

41

and 3-IGN (Maron et al., 2019b). When |S| = O(n2) as in the case of edge-deleted policies, the
time complexity is O(n4) like 3-GNN (Morris et al., 2019).

More specifically, the time complexity of our method improves toO(|S|n∆max) where ∆max is the
maximum node degree, which is low for sparse graphs. This is a major benefit of our method, as
PPGN, k-IGN do not have time complexity improvements for sparse graphs, as they perform global
aggregations instead of just local neighborhood aggregations. For sparse graphs where ∆max =
O(1), we gain a factor of O(n) in time complexity over PPGN and 3-IGN and a factor of O(n2)
over 3-GNN.

Table 11 also reports the time complexity of two provably expressive, sparse architectures:
GSN (Bouritsas et al., 2020) and CWN (Bodnar et al., 2021a). The first method has the same
complexity of standard GNNs as long as the number of considered subgraphs in the bank is a small
constant. ESAN can match the complexity of GSN only in the case where |S| = O(1), which
is only the case for stochastic policies that we consider. The remarkable efficiency of GSN, how-
ever, is paid in terms of preprocessing complexity (discussed in the next subsection). As for CWN,
we report the time complexity for a generic lifting procedure generating a 2-dimensional cellular
complex, with np denoting the number of cells at dimension p and Bp the maximum considered
boundary size. Here, n0 = n, n1 = O(n∆max) refer to, respectively, the number of nodes and
edges. In the case of ring-liftings with ring size upper-bounded a small constant, the complexity can
be rewritten as O (n∆max + n2). In the case of molecules, the number of rings, n2, is generally
contained. However, the number of 2-cells may grow even exponentially for general graph distribu-
tions. When employing policies ND, ED, EGO(+), on the contrary, our approach works with bags
whose cardinality never exceeds the number of edges, irrespective of the graph distribution.

The space complexity of our method isO (|S|(n+ n∆max)), as we need to compute n node features
for each subgraph, while keeping the subgraph connectivity in memory. This evaluates to O(n2 +
n2∆max) for node-deleted and ego-net policies and O(n2∆max + (n∆max)2) for the edge-deleted
policy. We also note that the space complexity of our method can be improved to O(n + n∆max)
when using the DS-GNN architecture, as we may compute the GNN embedding of each subgraph
online and accumulate them in one tensor that represents the sum over all subgraphs — though this
requires sacrificing parallelism across subgraphs. Also, note that certain policies that significantly
reduce the size of subgraphs, such as low-depth ego-net policies, are even more efficient because the
number of edges in the subgraphs are much lower.

G.2 PREPROCESSING

In order to perform message passing on subgraphs, it is first required to apply a selection policy and
generate the bag. This amounts to a one-off computation that can be performed prior to training.
Simple implementations of the ND and ED policies have complexities O(nm) and O(m2), respec-
tively, where n is the number of nodes and m is the number of edges. As noted above, m can be
upper-bounded by n∆max, with ∆max typically small in sparse graphs. EGO policies are easily
implemented inO(n(n+m)), whereO(n+m) is the complexity of a generic Breadth First Search
algorithm employed to recover the k-hop neighborhood of a source node. More sophisticated im-
plementations of these selection policies may be possible, making the preprocessing step even more
parsimonious. As pointed out above, the preprocessing complexity directly depends on the size and
density of the graphs at hand; while practical run-times may be drastically reduced when working
with sparse graphs, we remark that they can never exceed the aforementioned theoretical bounds,
independently of the nature of graphs characterising the task being solved.

This is in contrast with the preprocessing complexity of GSN and CWN, which is generally O(nk)
for a generic substructure of size k. Preprocessing times are remarkably reduced in practice for
certain families of graphs (e.g. planar graphs) and substructures for which specialised algorithms
exists (e.g. triangles and rings). For example, these methods have been observed to attain tractable
practical run-times on molecular datasets. Still, the worst-case exponential complexity may hinder
their application in the presence of graphs of non-characterised distribution or when substructures
of more efficient matching are not known to play a relevant role.

Finally, we remark that all these preprocessing strategies are embarrassingly parallel w.r.t. the dif-
ferent graphs in a dataset and parallelisation techniques can be applied to dramatically reduce the
empirical run-time.

42

	1 Introduction
	2 Equivariant Subgraph Aggregation Networks (ESAN)
	2.1 Bag-of-Graphs Encoder Architecture
	2.2 Subgraph selection policies
	2.3 Related work

	3 Theoretical analysis
	3.1 A WL analogue for ESAN
	3.2 WL analogues and expressive power
	3.3 Theoretical expressiveness of design choices

	4 Experiments
	5 Conclusion and future directions
	A Background: learning on sets and graphs
	B Relation to previous works
	C Implementation details
	C.1 TUDatasets
	C.2 OGB datasets
	C.3 RNI datasets

	D Additional experiments
	D.1 Stochastic Sampling results
	D.2 Timing

	E WL variants and proofs for Section 3.2
	E.1 Preliminaries
	E.2 Proofs for results in Section 3.2
	E.2.1 DSS-WL vs. DS-WL
	E.2.2 Expressiveness of WL variants
	E.2.3 Neural counterparts

	F Proofs for Section 3.3: design choice expressiveness
	F.1 Proofs of DSS versus DS
	F.2 Proofs of Increasing Encoder Expressiveness
	F.3 Proofs of Policy Choice and Expressiveness
	F.4 Strongly Regular Graph Proofs
	F.4.1 ND and EGO+ on Strongly Regular Graphs
	F.4.2 ED on Strongly Regular Graphs

	F.5 Proof of Proposition 3

	G Complexity
	G.1 Forward pass
	G.2 Preprocessing

