
Learning over Families of Sets - Hypergraph Representation Learning
for Higher Order Tasks

Balasubramaniam Srinivasan
Purdue University
bsriniv@purdue.edu

Da Zheng
Amazon Web Services
dzzhen@amazon.com

George Karypis
Amazon Web Services
gkarypis@amazon.com

Abstract
Graph representation learning has made major strides
over the past decade. However, in many relational do-
mains, the input data are not suited for simple graph
representations as the relationships between entities go
beyond pairwise interactions. In such cases, the relation-
ships in the data are better represented as hyperedges
(set of entities) of a non-uniform hypergraph. While there
have been works on principled methods for learning rep-
resentations of nodes of a hypergraph, these approaches
are limited in their applicability to tasks on non-uniform
hypergraphs (hyperedges with different cardinalities).
In this work, we exploit the incidence structure to de-
velop a hypergraph neural network to learn provably
expressive representations of variable sized hyperedges
which preserve local-isomorphism in the line graph of
the hypergraph, while also being invariant to permuta-
tions of its constituent vertices. Specifically, for a given
vertex set, we propose frameworks for (1) hyperedge clas-
sification and (2) variable sized expansion of partially
observed hyperedges which captures the higher order in-
teractions among vertices and hyperedges. We evaluate
performance on multiple real-world hypergraph datasets
and demonstrate consistent, significant improvement in
accuracy, over state-of-the-art models.

1 Introduction
Deep learning on graphs has been a rapidly evolving field
due to its widespread applications in domains such as
e-commerce, personalization, fraud & abuse, life sciences,
and social network analysis. However, graphs can only
capture interactions involving pairs of entities whereas
in many of the aforementioned domains any number
of entities can participate in a single interaction. For
example, more than two substances can interact at
a specific instance to form a new compound, study
groups can contain more that two students, recipes
contain multiple ingredients, shoppers purchase multiple
items together, etc. Graphs, therefore, can be an over
simplified depiction of the input data (which may result

in loss of significant information). Hypergraphs, [7] (see
Figure 1(a) for example), which serve as the natural
extension of dyadic graphs, form the obvious solution.

Due to the ubiquitous nature of hypergraphs, learn-
ing on hypergraphs has been studied for more than a
decade [1, 27]. Early works on learning on hypergraphs
employed random walk procedures [15, 5, 8] and the vast
majority of them were limited to hypergraphs whose
hyperedges have the same cardinality (k-uniform hyper-
graphs). More recently, with the growing popularity and
success of message passing graph neural networks [14, 12],
message passing hypergraph neural networks learning
frameworks have been proposed [10, 4, 23, 26, 24]. These
works rely on constructing the clique expansion (Fig-
ure 1(c)), star expansions (Figure 1(d)), or other ex-
pansions of the hypergraph that preserve partial infor-
mation. Subsequently, node representations are learned
using GNN’s on the graph constructed as a proxy of the
hypergraph. These strategies are insufficient as either (1)
there does not exist a bijective transformation between
a hypergraph and the constructed clique expansion (loss
of information); (2) they do not accurately model the
underlying dependency between a hyperedge and its con-
stituent vertices (for example, a hyperedge may cease
to exist if one of the nodes were deleted); (3) they do
not directly model the interactions between different
hyperedges. The primary goal of this work is to address
these issues and to build models which better represent
hypergraphs.

Corresponding to the adjacency matrix representa-
tion of the edge set of a graph, a hypergraph is com-
monly represented as an incidence matrix (Figure 1(b)),
in which a row is a vertex, a column is a hyperedge
and an entry in the matrix is 1 if the vertex belongs to
the hyperedge. In this work, we directly seek to exploit
the incidence structure of the hypergraph to learn repre-
sentations of nodes and hyperedges. Specifically, for a
given partially observed hypergraph, we synchronously
learn vertex and hyperedge representations that simul-
taneously take into consideration both the line graph

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

ar
X

iv
:2

10
1.

07
77

3v
1

 [
cs

.L
G

]
 1

9
Ja

n
20

21

(a) Hypergraph

1 1 0

1 1 0

0 1 1

0 0 1

0 0 1

(b) Incidence Matrix

(c) Clique Expansion (d) Star Expansion (e) Line Graph

Figure 1: A Hypergraph(a) with 5 nodes v1, v2, . . . v5 and 3 hyperedges e1 = {v1, v2}, e2 = {v1, v2, v3}, e3 = {v3, v4, v5} ,
its incidence matrix(b), its clique expansion (c), its star expansion (d) and its line graph(e)

Figure 1(e) and the set of hyperedges that a vertex
belongs to in order to learn provably expressive repre-
sentations. The jointly learned vertex and hyperedge
representations are then used to tackle higher-order tasks
such as expansion of partially observed hyperedges and
classification of unobserved hyperedges.

While the task of hyperedge classification has been
studied before, set expansion for relational data has
largely been unexplored. For example, given a partial
set of substances which are constituents of a single
drug, hyperedge expansion entails completing the set
of all constituents of the drug while having access to
composition to multiple other drugs. A more detailed
example for each of these tasks is presented in the
Appendix - Section 7.1. For the hyperedge expansion
task, we propose a GAN framework [11] to learn
a probability distribution over the vertex power set
(conditioned on a partially observed hyperedge), which
maximizes the point-wise mutual information between a
partially observed hyperedge and other disjoint vertex
subsets in the vertex power set.

Our Contributions can be summarized as: (1) Pro-
pose a hypergraph neural network which exploits the
incidence structure and hence works on real world sparse
hypergraphs which have hyperedges of different cardinal-
ities. (2) Provide provably expressive representations of
vertices and hyperedges, as well as that of the complete
hypergraph which preserves properties of hypergraph
isomorphism. (3) Introduce a new task on hypergraphs
– namely the variable sized hyperedge expansion and
also perform variable sized hyperedge classification. Fur-
thermore, we demonstrate improved performance over
existing baselines on majority of the hypergraph datasets
using our proposed model.

2 Preliminaries
In our notation henceforth, we shall use capital case
characters (e.g., A) to denote a set or a hypergraph,
bold capital case characters (e.g., A) to denote a matrix,

and capital characters with a right arrow over it (e.g.,
−→
A) to denote a sequence with a predefined ordering of
its elements. We shall use lower characters (e.g., a) to
denote the element of a set and bold lower case characters
(e.g., a) to denote vectors. Moreover, we shall denote
the i-th row of a matrix A with Ai·, the j-th column of
the matrix with A·j , and use Am to denote a subset of
the set A of size m i.e., Am ⊆ A; |Am| = m.
(Hypergraph) Let H = (V,E,X,E) denote a hyper-
graph H with a finite vertex set V = {v1, . . . , vn}, cor-
responding vertex features X ∈ Rn×d; d > 0, a finite
hyperedge set E = {e1, . . . , em}, where E ⊆ P ∗(V)\{∅}
and

m⋃
i=1

ei = V , where P ∗(V) denotes the power set

on the vertices, the corresponding hyperedge features
E ∈ Rm×d; d > 0. We use E(v) (termed star of a vertex)
to denote the hyperedges incident on a vertex v and use
SH , a set of tuples, to denote the family of stars where
SH = {(v,E(v)) : ∀v ∈ V } called the family of stars
of H. When explicit vertex and hyperedge features and
weights are unavailable, we will consider X = 1n1n

T ,
E = 1m1m

T , where 1 represents a n×1 or m×1 vector
of ones respectively. The vertex and edge set V,E of a
hypergraph can equivalently be represented with an inci-
dence matrix I ∈ {0, 1}|V |×|E|, where Iij = 1 if vi ∈ ej
and Iij = 0 otherwise. Isomorphic hypergraphs either
have the same incidence matrix or a row/column/row
and column permutation of the incidence matrix i.e., the
matrix I is separately exchangeable. We use LH to de-
note the line graph (Figure 1(e)) of the hypergraph, use
H? to denote the dual of a hypergraph. Additionally, we
define a function LGH , a multi-valued function termed
line hypergraph of a hypergraph - which generalizes the
concepts line graph and the dual of a hypergraph and
defines the spectrum of values which lies between them.
For the scope of this work, we limit ourselves for LGH to
be a dual valued function - using only the two extremes,
such that LGH(0) = LH and LGH(1) = H?.

Also, we use Σn,m to denote the set of all possible at-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

tributed hypergraphs H with n nodes and m hyperedges.
More formally, Σn,m is the set of all tuples (V,E,X,E)
— for vertex node set size n and hyperedge set size m.
(1-Weisfeiler-Leman(1-WL) Algorithm) Let G =
(V,E) be a graph, with a finite vertex set V and let s :
V → ∆ be a node coloring function with an arbitrary co-
domain ∆ and s(v), v ∈ V denote the color of a node in
the graph. Correspondingly, we say a labeled graph (G, s)
is a graph G with a complete node coloring s : V → ∆.
The 1-WL Algorithm [3] can then be described as follows:
let (G, s) be a labeled graph and in each iteration, t ≥ 0,

the 1-WL computes a node coloring c(t)s : V → ∆, which
depends on the coloring from the previous iteration. The
coloring of a node in iteration t > 0 is then computed as
c
(t)
s (v) = HASH

((
c
(t−1)
s (v),

{
c
(t−1)
s (u) | u ∈ N(v)

}))
where HASH is bijective map between the vertex set and
∆, and N(v) denotes the 1-hop neighborhood of node
v in the graph. The 1-WL algorithm terminates if the
number of colors across two iterations does not change,
i.e., the cardinalities of the images of c(t−1)

s and c(t)s are
equal. The 1-WL isomorphism test, is an isomorphism
test, where the 1-WL algorithm is run in parallel on
two graphs G1, G2 and the two graphs are deemed non-
isomorphic if a different number of nodes are colored as
κ in ∆.
(Graph Neural Networks (GNNs)) For a graph
G = (V,E,X), modern GNNs use the edge connectivity
and node features X to learn a representation vector of a
node, hv, or the entire graph, hG. They employ a neigh-
borhood aggregation strategy, where the representation
of a node is iteratively updated by an aggregation of
the representations of its neighbors. Multiple layers are
employed to capture the k-hop neighborhood of a node.
The update equation of a GNN layer can be written as

hk
v = COMBINE(hk−1

v ,AGGREGATEk({hk−1
u : u ∈ N(v)}))

where hkv is the representation of node v after k layers
and N(v) is the 1-hop neighborhood of v in the graph.
[17, 22] showed that message passing GNNs are no more
powerful than the 1-WL algorithm.
(Finite Symmetric Group Sn) A finite symmetric
group Sm is a discrete group G defined over a finite
set of size m symbols (w.l.o.g. we shall consider the
set {1, 2, . . . ,m}) and consists of all the permutation
operations that can be performed on the m symbols.
Since the total number of such permutation operations
is m! the order of Sm is m!.
(Group Action (left action)) If A is a set and G
is a group, then A is a G-set if there is a function
φ : G ×A → A, denoted by φ(g, a) 7→ ga, such that:

(i) 1a = a for all a ∈ A, where 1 is the identity element
of the group G

(ii) g(ha) = (gh)(a) for all g, h ∈ G and a ∈ A

(Orbit) Given a group G acting on a set A, the orbit of
an element a ∈ A is the set of elements in A to which
a can be moved by the elements of G. The orbit of a is
denoted by O(a) = {g · a|g ∈ G} ⊂ A.
(Vertex Permutation action πV) A vertex permu-
tation action π ∈ Sk is the application of a left action
φ : Sk×Vk → Vk with the element π on a sorted sequence
of k vertices represented as

−→
Vk = (v1, . . . , vk) of a hy-

pergraph to output a corresponding permuted sequence
of vertices i.e., φ(π,

−→
Vk) =

−→
Vkπ = (vπ(1), . . . , vπ(k)). A

permutation action π ∈ Sn can also act on any vector,
matrix, or tensor defined over the nodes V , e.g., (Xi·)i∈V ,
and output an equivalent vector, matrix, or tensor with
the order of the nodes permuted e.g., (Xπ(i)·)π(i)∈V .
(Hyperedge Permutation Action πE) A hyperedge
permutation action π ∈ Sk is the application of a
left action ψ : Sk × Ek → Ek with the element π
on a sorted sequence of m hyperedges represented
as
−→
Ek = (e1, . . . , ek) of a hypergraph to output a

corresponding permuted sequence of hyperedges i.e.,
ψ(π,

−→
Ek) =

−−→
Ekπ = (eπ(1), . . . , eπ(k)). A permutation

action π ∈ Sm can also act on any vector, matrix, or
tensor defined over the hyperedges E, e.g., (Ei·)i∈E , and
output an equivalent vector, matrix, or tensor with the
order of the hyperedges permuted e.g., (Eπ(i)·)π(i)∈E . It
is crucial to note that a vertex permutation action can
be simultaneously performed along with the hyperedge
permutation. We represent a joint permutation on the
entire edge set E as π2(π1(E)), and for a hyperedge
e ∈ E as π2(π1(e)) where πi ∈ Sn, π2 ∈ Sm
(Node Equivalence Class/ Node Isomorphism)
The equivalence classes of vertices v ∈ V of a hypergraph
H under the action of automorphisms between the
vertices are called vertex equivalence classes or vertex
orbits. If two vertices v1, v2 ∈ V are in the same vertex
orbit, we say they are node isomorphic and are denoted
by v1

∼= v2.
(Hyperedge Orbit/ Isomorphism) The equivalence
classes of non empty subsets of vertices e ∈ P?(V)\∅; e ∈
E of a hypergraph G under the action of automorphisms
between the subsets are called hyperedge orbits. If
two proper subsets e1, e2 ∈ P ∗(V) \ ∅ are in the same
hyperedge orbit, we say they are hyperedge isomorphic
and are denoted by e1

∼= e2.
(Hypergraph Orbit and Isomorphism) The hyper-
graph orbit of a hypergraph H, given by the application
of the elements π of the finite symmetry group Sn on the
vertex set V / Sm on the edge set E/ or any combination
of the two and appropriately modifying the associated
matrices X,E, I of the hypergraph. Two hypergraphs
H1 and H2 are said to be isomorphic (equivalent) de-
noted by H1

∼= H2 iff there exists either a vertex permu-
tation action or hyperedge permutation action or both

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

such that H1 = π ·H2. The hypergraph orbits are then
the equivalence classes under this relation; two hyper-
graphs H1 and H2 are equivalent iff their hypergraph
orbits are the same.
(G-invariant functions) A function φ acting on a
hypergraph H given by φ : Σn,m → R◦ is G-invariant
whenever it is invariant to any vertex permutation/ edge
permutation action π ∈ S· in the Σn,m symmetric space
i.e., φ(π · H) = φ(H) and all isomorphic hypergraphs
obtain the same representation. Similarly, a function
ρ : P ∗(V) \ ∅ → R·acting on a hyperedge for a given
hypergraph H, is said to be G-invariant iff all isomorphic
hyperedges obtain the same representation.

2.1 Problem Setup
Partially observed hyperedge expansion Consider
a hypergraph H = (V,E′,X,E) where a small fraction
of hyperedges in the hyperedge set are partially observed
and let E be the completely observed hyperedge set. A
partially observed hyperedge implies ∃e′i ∈ E′, ∃vj ∈
V, vj 6∈ e′i but vj ∈ ei, ei ∈ E, where ei is the
corresponding completely observed hyperedge of e′i The
task here is, given a partial hyperedge e′ ∈ E′, e′ 6∈ E
but e′ ⊂ e, e ∈ E, to complete e′ with vertices from V
so that after hyperedge expansion e′ = e.
Unobserved hyperedge classification Consider a
hypergraph H = (V,E′,X,E′) with an incompletely
observed hyperedge set E′ and let E be the correspond-
ing completely observed hyperedge set with E′ ⊂ E. An
incomplete hyperedge set implies ∃e ∈ E; e 6∈ E′ where
|E′| < |E| = m. It is important to note that in this
case, if a certain hyperedge is present in E′, then the
hyperedge is not missing any vertices in the observed
hyperedges. The task here is, for a given hypergraph H,
to predict whether a new hyperedge e was present but
unobserved in the noisy hyperedge set i.e., e 6∈ E′ but
e ∈ E.

3 Learning Framework and Theory
Previous hypergraph neural networks [10, 23, 4], employ
a proxy graph to learn vertex representations for every
vertex v ∈ V , by aggregating information over its neigh-
borhood. Hyperedge representations (or alternatively,
hypergraph) are then obtained, when necessary, by using
a pooling operation (e.g. sum, max, mean, etc) over the
vertices in the hyperedge (vertex set of the hypergraph).
However, such a strategy, fails to (1) preserve properties
of equivalence classes of hyperedges/hypergraphs and (2)
capture the implicit higher order interactions between
the nodes/ hyperedges, and fails on higher order tasks
as shown by [19].

To alleviate these issues, in this work, we use a mes-
sage passing framework on the incidence graph represen-
tation of the observed hypergraph, which synchronously

updates the node and observed hyperedge embeddings
as follows:

hk
e = σ(W k

E · (h(k−1)
e ⊗ fk({(h(k−1)

v ⊗ pk({h(k−1)

e′

: e′ 3 v})) : ∀v ∈ ewhere v ∈ V, e, e′ ∈ E})))
(3.1)

hk
v = σ(W k

V · (h(k−1)
v ⊗ gk({h(k−1)

e ⊗ qk({h(k−1)

v′

: v′ ∈ e})) : ∀e 3 v where v, v′ ∈ V, e ∈ E})))
(3.2)

where, ⊗ denotes vector concatenation, fk, gk, pk, qk
are injective set functions (constructed via [25, 18])
in the kth layer, hke ,hkv are the vector representations
of the hyperedge and vertices after k layers, W k

V ,W
k
E

are learnable weight matrices and σ is an element-wise
activation function. We use K (in practice, K=2) to
denote the total number of convolutional layers used.
From Equation (3.2) it is clear to see that a vertex not
only receives messages from the hyperedges it belongs
too, but also from neighboring vertices in the clique
expansion. Similarly, from Equation (3.1), a hyperedge
receives messages from its constituent vertices as well
as neighboring hyperedges in the line graph of the
hypergraph.

However, the above equations, standalone do not
present a framework to learn representations of unob-
served hyperedges for downstream tasks. In order to do
this, post the convolutional layers, the representation of
any hyperedge (observed or unobserved) are obtained
using a function Γ : P ?(V)× Σn,m → Rd as:

Γ(e′, H; Θ) = φ({hK
vi : vi ∈ e′})⊗ ρ({hK

e : e 3 vi ∀vi ∈ e′})
where vi ∈ V, e ∈ E′

(3.3)

where φ, ρ are injective set, multiset functions respec-
tively, and Θ denotes the model parameters of the en-
tire hypergraph neural network (convolutional layers,
set functions). Correspondingly, the representation of
the complete hypergraph is obtained using a function
Γ : Σn,m → Rd as:

(3.4) Γ(H; Θ) = φ({hKv : v ∈ V })⊗ρ({hKe : e ∈ E}))

3.1 Theory
In what follows, we list the properties of the vertex/
hyperedge representations. All proofs are presented in
the Supplementary Material.

Property 3.1. (Vertex Representations)
The representation of a vertex v ∈ V in a hy-
pergraph H learnt using Equation (3.2) is a G-
invariant representation Φ(v, V,E,X,E) where
Φ : V × Σn,m → Rd, d ≥ 1 such that Φ(v, V,E,X,E) =

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Φ((π1(v), π1(V), π2(π1(E)), π1(X), π2(π1(E))) ∀π1∀π2

where π1 ∈ Sn andπ2 ∈ Sm. Moreover, two vertices
v1, v2 which belong to the same vertex equivalence class
i.e. v1

∼= v2 obtain the same representation.

Property 3.2. (Hyperedge Representations)
The representation of a hyperedge e ∈ E in a
hypergraph H learnt using Equation (3.1) is a
G-invariant representation Φ(e, V,E,X,E) where
Φ : P ?(V)×Σn,m → Rd, d ≥ 1 such that Φ(e, V,E,X,E)
= Φ((π2(π1(e)), π1(V), π2(π1(E)), π1(X), π2(π1(E)))
∀π1∀π2 where π1 ∈ Sn andπ2 ∈ Sm Moreover, two
hyperedges e1, e2 which belong to the same hyper-
edge equivalence class i.e. e1

∼= e2 obtain the same
representation.

Next, we restate a theorem from [20] which provides
a means to deterministically distinguish non isomor-
phic hypergraphs. Subsequently, we characterize the
expressivity of our model to distinguish non-isomorphic
hypergraphs.

Theorem 3.1. ([20]) Let H1, H2 be hypergraphs with-
out isolated vertices whose line hypergraphs LGH1

, LGH2

are isomorphic. Then H1
∼= H2 if and only if there

exists a bijection β : V LGH1
→ V LGH2

such that
β (SH1

) = SH2
, where SHi is the family of stars of the

hypergraph Hi

Theorem 3.2. Let H1, H2 be two non isomorphic
hypergraphs with finite vertex and hyperedge sets and
no isolated vertices. If the Weisfeiler-Lehman test
of isomorphism decides their line graphs LH1 , LH2 or
the star expansions of their duals H?

1 , H
?
2 to be not

isomorphic then there exists a function Γ : Σn,m → Rd
(via Equation (3.4)) and parameters Θ that maps the
hypergraphs H1, H2 to different representations.

We now, extend this to the expressivity of the hyperedge
representations and then show that the property of
separate exchangeability [2] of the incidence matrix is
preserved by the hypergraph representation.

Corollary 3.1. There exists a function Γ : P ?(V) ×
Σn,m → Rd (via Equation (3.3)) and parameters Θ that
maps two non-isomorphic hyperedges e1, e2 to different
representations.

Remark 3.1. (Separate Exchangeability) The
representation of a hypergraph H learnt using the
function Γ : Σn,m → Rd (via Equation (3.4)) preserves
the separate exchangeability of the incidence structure I
of the hypergraph.

We now describe the learning procedures for the two
tasks, namely variable size hyperedge classification and
variable size hyperedge expansion.

3.2 Hyperedge Classification
For a hypergraph H, let E′ denote the partially observed
hyperedge set in our data corresponding to the true
hyperedge set E. The goal here is to learn a classifier r :
Rd → R over the representations of hyperedges (obtained
using Equation (3.3)) s.t σ(r(Γ({vi, v2, . . . , vM}, H)))
is used to classify if an unobserved hyperedge e =
{v1, v2, . . . , vM} exists i.e. e 6∈ E′ but e ∈ E where
all vi ∈ V for i ∈ {1, 2, . . . ,M}, and σ is the logistic
sigmoid.

Now, for the given hypergraph H, let Y H ∈
{0, 1}|P?(V)\∅| be the target random variables associated
with the vertex power set of the graph. Let YH ∈
{0, 1}|P?(V)\∅| be the corresponding true values attached
to the vertex subsets in the power set, such that YHe = 1
iff e ∈ E. We then model the joint distribution of the
hyperedges in the hypergraphs by making a mean field
assumption as:
(3.5)

P (H) =
∏

e∈P?(V)\∅

Bernoulli(Y G
e = YG

e |r(Γ(e,H); Θ))

Subsequently, to learn the model parameters Θ -
we make a closed world assumption and treat only the
observed hyperedges in E′ as positive and all other edge
as false and seek to maximize the log-likelihood.

Θ = arg max
Θ

∑
e∈E′

log p(Y H
e = 1|r(Γ(e,H)); Θ)+∑

e∈P?(V)\{E′,∅}

log p(Y H
e = 0|r(Γ(e,H)); Θ)

(3.6)

Since the size of vertex power set (2|V |), grows ex-
ponentially with the number of vertices, it is computa-
tionally intractable to use all negative hyperedges in the
training procedure. Our training procedure, hence em-
ploys a negative sampling procedure (in practice, we use
5 distinct negative samples for every hyperedge in every
epoch) combined with a cross entropy loss function, to
learn the model parameters via back-propagation. This
framework can trivially be extended to perform multi
class classification on variable sized hyperedges.

3.3 Hyperedge Completion
The set expansion task introduced in [25] makes the
infinite de-Finetti assumption i.e. the elements of
the set are i.i.d. When learning over finite graphs
and hypergraphs, this assumption is no longer valid
- since the data is relational - i.e. a finite de-Finetti
[9] assumption is required. Additionally, the partial
exchangeability of the structures (adjacency matrix/
incidence matrix) [2] have to be factored in as well.

This raises multiple concerns: (1) computing mutual
information of a partial vertex set with all other disjoint

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

vertex subsets in the power set is computationally
intractable; (2) to learn a model in the finite de-Finetti
setting, we need to consider all possible permutations for
a vertex subset. For example, under the conditions of
finite exchangeability, the point-wise mutual information
between two random variables X,Y - where both are
disjoint elements of the vertex power set (or hyperedges)
i.e. X,Y ∈ P ?(V) \ ∅, X ∩ Y = ∅ is given by:

(3.7) s(X|Y) = log p(X ∪ Y |α)− log p(X |α)p(Y |α)

where α is a prior and each of p(X|α), p(Y |α), P (X∪Y |α)
cannot be factorized any further i.e.
(3.8)

p(X|α) =
1

|X|!
∑
π∈ΠX

log p(vπ(1), vπ(2), . . . , vπ(|X|) |α)

where vi ∈ X, i ∈ {1, 2, . . . , |X|} and ΠX denotes the set
of all possible permutations of the elements of X. The
inability to factorize Equation (3.8) any further, leaves
no room for any computational benefits by a strategic
addition of vertices - one at a time (i.e. no reuse of
computations, whatsoever).

As a solution to this computationally expensive prob-
lem, we propose a GAN framework [11] to learn a proba-
bility distribution over the vertex power set, conditioned
on a partially observed hyperedge, without sacrificing
on the underlying objective of maximizing point-wise
mutual information between X,Y (Equation (3.7)). We
describe the working of the generator and the discrim-
inator of the GAN, with the help of a single example
below.

Let e denote a partially observed hyperedge and
Γ(e,G) denote the representation of the partially ob-
served hyperedge obtained via Equation (3.3). Let
VK , VK denote the true and predicted vertices respec-
tively to complete the partial hyperedge e, where
VK , VK ⊆ V \ {e}.

3.3.1 Generator(G?) The goal of the generator is
to accurately predict VK as VK . We solve this using a
two-fold strategy - first predict the number of elements
K, missing in the partially observed hyperedge e and
then jointly select K vertices from V \ e. Ideally, the
selection of the best K vertices should be performed
over all vertex subsets of size K (where vertices are
sampled from V \ e without replacement). However, this
is computationally intractable even for small values e.g
K = 2, 3 for large graphs with millions of nodes.

We predict the number of elements missing in a
hyperedge, K, using a function a1 : Rd → N over the
representation of the partial hyperedge, Γ(e,G). To
address the problem of jointly selecting a set of k vertices
without sacrificing on computational tractability, we seek

to employ a variant of the Top-K problem often used in
computing literature.

The standard top-K operation can be adapted
to vertices as: given a set of vertices of a graph
{v1, v2, · · · vn} = V \ {e}, to return a vector A =

[A1, . . . , An]
> such that

Ai =

{
1, if vi is a top- K element in V \ e
0, otherwise.

However a standard top-K procedure, which operates
by sampling vertices (from the vertex set - a categorical
distribution) is discrete and hence not differentiable. To
alleviate the issue of differentiability, Gumbel softmax
[13, 16] could be employed to provide a differentiable
approximation to sampling discrete data. However,
explicit top-K Gumbel sampling (computing likelihood
for all possible sets of size k over the complete domain)
is computationally prohibitive and hence finds limited
applications in hypergraphs with a large number of nodes
and hyperedges.

In this work, we sacrifice on differentiability and
focus on scalability. We limit the vertex pool (which can
complete the hyperedge) to only vertices in the two hop
neighborhood (in the clique expansion CH) of the vertices
in the partial hyperedge. For real world datasets, even
the reduced vertex pool consists of a considerable number
of vertices - and explicitly computing all sets of size k
is still prohibitive. In such cases, we sample uniformly
at random a large number of distinct vertex subsets of
size k from the reduced vertex pool, where k is the size
predicted by the generator. In practice, the large number
is typically min(

(
P
k

)
, 100,000), where P is the number

of vertices in the reduced vertex pool. Subsequently,
we compute the inner product of the representations of
these subsets (computed using Equation (3.3)) with the
representation of the partially observed hyperedge. We
then use a simple Top-1 to select the set of size k which
maximizes the inner product.

3.3.2 Discriminator(D?) The goal of the discrimi-
nator is to distinguish the true, but unobserved hyper-
edges from the others. To do this, we obtain repre-
sentations of Γ(e,G),Γ(VK , G),Γ(e ∪ VK , G) (and simi-
larly for the predicted VK using the generator G?) and
employ the discriminator in the same vein as Equa-
tion (3.7). As a surrogate for the log-probablities, we
learn a function g : Rd → Rd over the representations
of Γ(e,G),Γ(VK , G),Γ(e ∪ VK , G) (log-probabilities in
higher dimensional space). Following this, we apply a
function f : Rd → R+∪{0}, as a surrogate for the mutual
information computation. The equation of discriminator

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

can then be listed as:

D?(VK |e,H) = σ(f(g(Γ(e ∪ VK , H))

−g(Γ(e,H))− g(Γ(VK , H))))
(3.9)

and correspondingly for D?(G?(VK |e,G)), where σ
is the logistic sigmoid.

Our training procedure for the GAN, over the
hypergraph H, can then be summarized as follows. Let
V † denote the value function and let E′ denote a set of
partial hyperedges and E denote the corresponding set
with all hyperedges completed. Let VKe , VKe denote the
corresponding true and predicted vertices to complete
the hyperedge. The value function can then be written
as:

min
G?

max
D?

V †(D?, G?) =
∑

e′∈E′

logD?(VKe′ |e
′, H)+

log(1−D?(G?(e′, H)))

(3.10)

In practice, the model parameters of the GAN are
learnt using a cross entropy loss and back-propagation.
An MSE loss is employed to train the function a1, the
function that predicts the number of missing vertices in
a hyperedge, using ground truth information about the
number of missing vertices in the partial hyperedge.

4 Results
We first briefly describe the datasets and then present
our experimental results on the two hypergraph tasks.

4.1 Datasets
We use the publicly available hypergraph datasets from
[6] to evaluate the proposed models against multiple
baselines (described below). We ignore the timestamps
in the datasets and only use unique hyperedges which
contain greater than 1 vertex. Moreover, none of the
datasets have node or hyperedge features. We summarize
the dataset statistics in the Supplementary material. We
briefly describe the hypergraphs and the hyperedges in
the different datasets below.

• Online tagging data (tags-math-sx; tagsask-ubuntu).
In this dataset, nodes are tags (annotations) and a
hyperedge is a set of tags for a question on online
Stack Exchange forums.

• Online thread participation data (threads-math-
sx; threads-ask-ubuntu): Nodes are users and a
hyperedge is a set of users answering a question on
a forum.

• Two drug networks from the National Drug Code
Directory, namely (1) NDC-classes: Nodes are class
labels and a hyperedge is the set of class labels
applied to a drug (all applied at one time) and

(2) NDC-substances: Nodes are substances and a
hyperedge is the set of substances in a drug.

• US. Congress data (congress-bills): Nodes are
members of Congress and a hyperedge is the set
of members in a committee or cosponsoring a bill.

• Email networks (email-Enron; email-Eu): Nodes are
email addresses and a hyperedge is a set consisting
of all recipient addresses on an email along with the
sender’s address.

• Contact networks (contact-high-school; contact-
primary-school): Nodes are people and a hyperedge
is a set of people in close proximity to each other.

• Drug use in the Drug Abuse Warning Network
(DAWN): Nodes are drugs and a hyperedge is the
set of drugs reportedly used by a patient before an
emergency department visit.

4.2 Experimental Results
Hyperedge Classification In this task, we compare
our model against five baselines. The first is a trivial
predictor, which always predicts 1 for any hyperedge
(in practice, we use 5 negative samples for every real
hyperedge). The second two baselines utilize a GCN
[14] or GraphSAGE [12] on the clique expansion of
the hypergraph. GCN on the clique expansion on the
hypergraph is the model proposed by [10] as HGNN.
For the fourth baseline, we utilize the star expansion of
the hypergraph - and employ a heterogeneous RGCN
to learn the vertex, hyperedge embeddings. In each
of the baselines, unobserved hyperedge embeddings
are obtained by aggregating the representations of the
vertices it contains, using a learnable set function [25, 18].
We report F1 scores on the eight datasets in Table 1.
More details about the experimental setup is presented
in the Supplementary material.
Hyperedge Expansion Due to lack of prior work in
hyperedge expansion, here we compare our strategy
against two other baselines for hyperedge expansion
(with the an identical GAN framework and setup to
predict the number of missing vertices, albeit without
computing joint representations of predicted vertices) :
(1) Addition of Top-K vertices, considered independently
of each other (2) Recursive addition of Top-1 vertex.
Since all the three models are able to accurately (close
to 100% accuracy) predict the number of missing
elements, we introduce normalized set difference, as
a statistic to compare the models. Normalized Set
difference (permutation invariant) is given by the number
of insertion/ deletions/ modifications required to go
from the predicted completion to the target completion
divided by the number of missing elements in the target
completion. For example, let {7,8,9} be a set which
we wish to expand. Then the normalized set difference

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Table 1: F1 scores for the hyperedge classification task (Higher is better).

Trivial
Clique Expansion-

GCN
(HGNN)

Clique Expansion-
SAGE

Star Expansion -
Heterogenous -

RGCN
Ours

NDC-classes 0.286 0.614(0.005) 0.657(0.020) 0.676(0.049) 0.768(0.004)
NDC-substances 0.286 0.421(0.014) 0.479(0.007) 0.525(0.006) 0.512(0.032)
DAWN 0.286 0.624(0.010) 0.664(0.006) 0.634(0.003) 0.677(0.004)
contact-primary-school 0.286 0.645(0.031) 0.681(0.014) 0.669(0.012) 0.716(0.034)
contact-high-school 0.286 0.759(0.030) 0.724(0.009) 0.739(0.012) 0.786(0.033)
tags-math-sx 0.286 0.599(0.009) 0.635(0.003) 0.572(0.003) 0.642(0.006)
tags-ask-ubuntu 0.286 0.545(0.005) 0.597(0.007) 0.545(0.006) 0.605(0.002)
threads-math-sx 0.286 0.453(0.017) 0.553(0.012) 0.487(0.006) 0.586(0.002)
threads-ask-ubuntu 0.286 0.425(0.007) 0.512(0.007) 0.464(0.010) 0.488(0.012)
email-Enron 0.286 0.618(0.032) 0.594(0.046) 0.599(0.040) 0.685(0.016)
email-EU 0.286 0.664(0.003) 0.651(0.019) 0.661(0.006) 0.687(0.002)
congress-bills 0.286 0.412(0.003) 0.530(0.055) 0.544(0.004) 0.566(0.011)
1 A 5-fold cross validation procedure is used - numbers outside the parenthesis are the mean values and the standard
deviation is specified within the parenthesis

2 Bold values show maximum empirical average, and multiple bolds happen when its standard deviation overlaps with
another average.

Table 2: Normalized Set Difference scores for the hyperedge
expansion task (lower is better)

Simple Recursive Ours

NDC-classes 1.207(0.073) 1.163(0.015) 1.107(0.007)
NDC-substances 1.167(0.000) 1.161(0.009) 1.153(0.004)
DAWN 1.213(0.006) 1.197(0.022) 1.088(0.018)
contact-primary-school 0.983(0.006) 0.986(0.001) 0.970(0.005)
contact-high-school 0.990(0.014) 1.000(0.000) 0.989(0.001)
tags-math-sx 1.012(0.025) 1.003(0.014) 0.982(0.011)
tags-ask-ubuntu 1.008(0.003) 1.005(0.003) 0.972(0.001)
threads-ask-ubuntu 0.999(0.000) 0.999(0.000) 0.981(0.003)
email-Enron 1.152(0.045) 1.182(0.015) 1.117(0.049)
email-EU 1.199(0.002) 1.224(0.010) 1.116(0.013)
congress-bills 1.186(0.004) 1.189(0.001) 1.107(0.004)
1 A 5-fold cross validation procedure is used - numbers outside the
parenthesis are the mean values and the standard deviation is
specified within the parenthesis

2 Bold values show minimum empirical average, and multiple
bolds happen when its standard deviation overlaps with another
average.

between a predicted completion {3,5,1,4} and target
completion {1,2} is computed as by (1+2)/2 = 1.5 (where
there is 1 modification and 2 deletions). It is clear to see
that, a lower normalized set difference score is better and
a score of 0 indicates a perfect set prediction. Results
are presented in Table 2.

5 Discussion
In the hyperedge classification task, from Table 1 it
is clear to see that our model which with provable
expressive properties performs better than the baselines,
on most datasets. All three non-trivial baselines
appear to suffer from their inability to capture higher
order interactions between the vertices in a hyperedge.
Moreover, the loss in information by using a proxy graph
- in the form of the clique expansion - also affects the
performance of the SAGE and GCN baselines. The

SAGE baseline obtaining better F1 scores over GCN
suggests that the self loop introduced between vertices
in the clique expansion appears to hurt performance.
The lower scores of the star expansion models can be
attributed to its inability in capturing vertex-vertex and
hyperedge-hyperedge interactions.

For the hyperedge expansion task, from Table 2 it is
clear to see that adding vertices in a way which captures
interactions amongst them performs better than adding
vertices independently of each other or in a recursive
manner. The relatively weaker performance of adding
vertices recursively, one at a time can be attributed to a
poor choice of selection of the first vertex to be added
(once an unlikely vertex is added, the sequence cannot
be corrected).

6 Conclusions
In this work, we developed a hypergraph neural network
to learn provably expressive representations of vertices,
hyperedges and the complete hypergraph. We proposed
frameworks for hyperedge classification and a novel hy-
peredge expansion task, evaluated performance on mul-
tiple real-world hypergraph datasets, and demonstrated
consistent, significant improvement in accuracy, over
state-of-the-art models.

References

[1] Sameer Agarwal, Kristin Branson, and Serge Belongie.
Higher order learning with graphs. In Proceedings of
the 23rd international conference on Machine learning,
pages 17–24, 2006.

[2] David J Aldous. Representations for partially exchange-
able arrays of random variables. Journal of Multivariate
Analysis, 11(4):581–598, 1981.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

[3] László Babai, Paul Erdos, and Stanley M Selkow. Ran-
dom graph isomorphism. SIaM Journal on computing,
9(3):628–635, 1980.

[4] Song Bai, Feihu Zhang, and Philip HS Torr. Hyper-
graph convolution and hypergraph attention. arXiv
preprint arXiv:1901.08150, 2019.

[5] Abdelghani Bellaachia and Mohammed Al-Dhelaan.
Random walks in hypergraph. In Proceedings of the
2013 International Conference on Applied Mathematics
and Computational Methods, Venice Italy, pages 187–
194, 2013.

[6] Austin R Benson, Rediet Abebe, Michael T Schaub,
Ali Jadbabaie, and Jon Kleinberg. Simplicial closure
and higher-order link prediction. Proceedings of the
National Academy of Sciences, 115(48):E11221–E11230,
2018.

[7] Claude Berge. Hypergraphs: combinatorics of finite sets,
volume 45. Elsevier, 1984.

[8] Uthsav Chitra and Benjamin J Raphael. Random walks
on hypergraphs with edge-dependent vertex weights.
arXiv preprint arXiv:1905.08287, 2019.

[9] Persi Diaconis. Finite forms of de finetti’s theorem on
exchangeability. Synthese, 36(2):271–281, 1977.

[10] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong
Ji, and Yue Gao. Hypergraph neural networks. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3558–3565, 2019.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[12] William L. Hamilton, Rex Ying, and Jure Leskovec.
Inductive representation learning on large graphs. In
NIPS, 2017.

[13] Eric Jang, Shixiang Gu, and Ben Poole. Categori-
cal reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[14] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[15] Linyuan Lu and Xing Peng. High-ordered random
walks and generalized laplacians on hypergraphs. In
International Workshop on Algorithms and Models for
the Web-Graph, pages 14–25. Springer, 2011.

[16] Chris J Maddison, Andriy Mnih, and Yee Whye
Teh. The concrete distribution: A continuous relax-
ation of discrete random variables. arXiv preprint
arXiv:1611.00712, 2016.

[17] Christopher Morris, Martin Ritzert, Matthias Fey,
William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 4602–4609, 2019.

[18] Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak
Rao, and Bruno Ribeiro. Janossy pooling: Learning
deep permutation-invariant functions for variable-size

inputs. arXiv preprint arXiv:1811.01900, 2018.
[19] Balasubramaniam Srinivasan and Bruno Ribeiro. On

the equivalence between positional node embeddings
and structural graph representations. In International
Conference on Learning Representations, 2020.

[20] RI Tyshkevich and Vadim E Zverovich. Line hyper-
graphs. Discrete Mathematics, 161(1-3):265–283, 1996.

[21] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu,
Yu Gai, Tianjun Xiao, Tong He, George Karypis,
Jinyang Li, and Zheng Zhang. Deep graph library:
A graph-centric, highly-performant package for graph
neural networks. arXiv preprint arXiv:1909.01315,
2019.

[22] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

[23] Naganand Yadati, Madhav Nimishakavi, Prateek Ya-
dav, Vikram Nitin, Anand Louis, and Partha Talukdar.
Hypergcn: A new method for training graph convolu-
tional networks on hypergraphs. In Advances in Neural
Information Processing Systems, pages 1509–1520, 2019.

[24] Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek
Abdelzaher. Hypergraph learning with line expansion.
arXiv preprint arXiv:2005.04843, 2020.

[25] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh,
Barnabas Poczos, Russ R Salakhutdinov, and Alexan-
der J Smola. Deep sets. In Advances in neural infor-
mation processing systems, pages 3391–3401, 2017.

[26] Ruochi Zhang, Yuesong Zou, and Jian Ma. Hyper-
sagnn: a self-attention based graph neural network for
hypergraphs. arXiv preprint arXiv:1911.02613, 2019.

[27] Dengyong Zhou, Jiayuan Huang, and Bernhard
Schölkopf. Learning with hypergraphs: Clustering,
classification, and embedding. In Advances in neu-
ral information processing systems, pages 1601–1608,
2007.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

7 APPENDIX
7.1 Examples:
Let A denote the complete set of substances which
are possible components in a prescription drug. Now,
given a partial set of substances X ′ ⊂ A part of a
single drug, the hyperedge expansion entails completing
the set X ′ as X with a set of substances from A,
(which were unobserved due to the data collection
procedure for instance), with the set X chosen s.t. X =
arg maxX′⊆X⊆A pdata(X) − pdata(X

′). On the other
hand, an example of a hyperedge classification tasks
involves determining whether a certain set of substances
can form a valid drug or alternatively classifying the
nature of a prescription drug. From the above examples,
it is clear to see that the hyperedge expansion and
hyperedge classification necessitate the framework to
jointly capture dependencies between all the elements
of an input set (for instance, the associated outputs in
these two tasks, requires us to capture all interactions
between a set of substances, rather than just the
pairwise interactions between a single substances and
its neighbors computed independently - as in node
classification) and hence are classed as higher order
tasks. Additionally, for the hyperedge expansion task,
the associated output is a finite set and hence in addition
to maximizing the interactions between the constituent
elements it is also required to be permutation invariant.
For instance, in the expansion task, the training data
X ∈ X as well as the associated target variable Y ∈ Y
to be predicted are both sets. The tasks are further
compounded by the fact that the training data and
the outputs are both relational i.e. the representation
of a vertex/ hyperedge also depends on other sets
(composition of other observed drugs) in the family of
sets i.e. the data is non i.i.d.

7.2 Proofs of Properties, Remarks and Theo-
rems

We restate the properties, remark and theorems for
convenience and prove them.

Property 7.1. (Vertex Representations)
The representation of a vertex v ∈ V in a hy-
pergraph H learnt using Equation (3.2) is a G-
invariant representation Φ(v, V,E,X,E) where
Φ : V × Σn,m → Rd, d ≥ 1 such that Φ(v, V,E,X,E) =
Φ((π1(v), π1(V), π2(π1(E)), π1(X), π2(π1(E))) ∀π1∀π2

where π1 ∈ Sn andπ2 ∈ Sm. Moreover, two vertices
v1, v2 which belong to the same vertex equivalence class
i.e. v1

∼= v2 obtain the same representation.

Proof. Part 1: Proof by contradiction. Let
π, π′ ∈ Sn be two different vertex permuta-
tion actions and let Φ(π(v), π(V), E, π(X),E) 6=

Φ(π′(v), π′(V), E, π′(X),E). This implies that the same
node gets different representations based on an ordering
of the vertex set. From eq. (3.2) it is clear to see that
the set function gk ensures that the vertex representa-
tion is not impacted by the edge permutation action.
Now let k = 1 Expanding eq. (3.2) for both vertex per-
mutation actions and applying the cancellation law of
groups, h1

v is independent of the permutation action.
Since h0

v is identical for both, it means the difference
arises from the edge permutation action, which is not
possible. Now, we can show using induction, the con-
tradiction holds for a certain k, k ≥ 2, then it holds
for k + 1 as well. Hence, Φ(π(v), π(V), E, π(X),E) =
Φ(π′(v), π′(V), E, π′(X),E)

Part2: Proof by contradiction Let v1, v
′
2 ∈ V

be two isomorphic vertices and let Φ(v1, V, E,X,E)
6= Φ(v2, V, E,X,E) This implies hkv1 6= hkv2 ∀k ≥
0 However, by the definition, the two vertices are
isomorphic, i.e. they have the same initial node
features (if available) i.e. h0

v1 = h0
v2 and they also

posses an isomorphic neighborhood. Equation (3.2) is
deterministic, hence the representations obtained by
the vertices v1, v2 are also identical after 1 iteration
i.e. h1

v1 = h1
v2 . Now using induction we can show

that, the representations for hkv1 is the same as hkv2 for
any k ≥ 2 Hence Φ(v1, V, E,X,E) = Φ(v2, V, E,X,E)
when v1

∼= v2

Property 7.2. (Hyperedge Representations)
The representation of a hyperedge e ∈ E in a
hypergraph H learnt using Equation (3.1) is a
G-invariant representation Φ(e, V,E,X,E) where
Φ : P ?(V)×Σn,m → Rd, d ≥ 1 such that Φ(e, V,E,X,E)
= Φ((π2(π1(e)), π1(V), π2(π1(E)), π1(X), π2(π1(E)))
∀π1∀π2 where π1 ∈ Sn andπ2 ∈ Sm Moreover, two
hyperedges e1, e2 which belong to the same hyper-
edge equivalence class i.e. e1

∼= e2 obtain the same
representation.

Proof. Proof is similar to the two part G-invariant vertex
representation proof given above. Replace the vertex
permutation action with a joint vertex edge permutation
action and similarly use the cancellation law of groups
twice.

Theorem 7.1. ([20]) Let H1, H2 be hypergraphs with-
out isolated vertices whose line hypergraphs LGH1

, LGH2

are isomorphic. Then H1
∼= H2 if and only if there

exists a bijection β : V LGH1
→ V LGH2

such that
β (SH1) = SH2 , where SHi is the family of stars of the
hypergraph Hi

Proof. Theorem is a direct restatement of the theorem
in the original work. Please refer to [20] for the proof.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Theorem 7.2. Let H1, H2 be two non isomorphic
hypergraphs with finite vertex and hyperedge sets and
no isolated vertices. If the Weisfeiler-Lehman test
of isomorphism decides their line graphs LH1

, LH2
or

the star expansions of their duals H?
1 , H

?
2 to be not

isomorphic then there exists a function Γ : Σn,m → Rd
(via Equation (3.4)) and parameters Θ that maps the
hypergraphs H1, H2 to different representations.

Proof. Part 1: Proof by construction, for the line graph
LH . Consider Equation (3.1). By construction, make the
set function p as an injective function with a multiplier
of a negligible value i.e. → 0. This implies, a hyperedge
only receives information from its adjacent hyperedges.
Since we use injective set functions, following the proof
of [22] Lemma 2 and Theorem 3, by induction it is easy
to see that if the 1-WL isomorphism test decides that
the line graphs are non-isomorphic, the representations
obtained by the hyperedges through the iterative message
passing procedure are also different.

Part 2: Proof by construction, for the dual graph
H? Again, consider Equation (3.1). By construction,
associate a unique identifier with every node and
hyperedge in the hypergraph. Construct p as an identity
map, this implies, a hyperedge preserves information
from which vertices it receives information as well. Since
the above p is injective, again following the proof of [22]
Lemma 2 and Theorem 3, by induction it is easy to see
that if the 1-WL isomorphism test decides that the dual
of a hypergraph are non-isomorphic, the representations
obtained by the hyperedges through the iterative message
passing procedure are also different.

Part 3: From part 1 and part 2 of the proof above,
we see that if either the line graphs or the dual of the
hypergraphs are distinguishable by the 1-WL isomor-
phism test as non-isomorphic then our proposed model
is able to detect it as well. From the property of ver-
tex representations it also seen that isomorphic vertices
obtain the same representation - hence preserving the
family of stars representation as well. Now consider
Equation (3.4) Now, if the line hypergraphs LGH1

and
LG2 are distinguishable via the line graphs or the dual
graphs then the representation obtained by hyperedge
aggregations are different. Correspondingly if the family
of stars - does not preserve a bijection across the two
hypergraphs, then the representation of the graphs are
distinguishable using the vertex aggregation.

Corollary 7.1. There exists a function Γ : P ?(V) ×
Σn,m → Rd (via Equation (3.3)) and parameters Θ that
map two non-isomorphic hyperedges e1, e2 to different
representations.

Proof. Proof is a direct consequence of the above

theorem, eq. (3.3) and above property of hyperedges.

Remark 7.1. (Separate Exchangeability) The
representation of a hypergraph H learnt using the
function Γ : Σn,m → Rd (via Equation (3.4)) preserves
the separate exchangeability of the incidence structure I
of the hypergraph.

Proof. From Equation (3.4), it is clear that once the
representations of the observed vertices and hyperedges
are obtained, the vertex permutation actions don’t affect
the edge permutation and vice versa - i.e. the set
functions φ, ρ act independently of each other. From
Equation (3.4) and through the use of set functions, it
is also clear that the representation of the hypergraph
is invariant to permutations of both vertex and edge.

7.3 Dataset Statistics
In Table 3 we list the number of vertices and hyperedges
for each of the datasets we have considered.

Table 3: Dataset Statistics

Vertices # Hyperedges

NDC-classes 1161 679
NDC-substances 5556 4916
contact-primary-school 242 4036
contact-high-school 327 1870
threads-math-sx 201863 177398
threads-ask-ubuntu 200974 18785
email-Enron 148 577
email-EU 1005 10631

7.4 Experimental Setup
Our implementation is in PyTorch using Python 3.6.
For the hyperedge classification task, we used 5 negative
samples for each positive sample. For the hyperedge
expansion task, the number of vertices to be added
varied from 2 to 7. The implementations for graph neural
networks are done using the Deep Graph Library [21].
We used two convolutional layers for all the baselines
as well as our model since it had the best performance
in our tasks (we had tested with 2/3/4/5 convolutional
layers). For all the models, the hidden dimension for
the convolutional layers, set functions was tuned from
{8,16,32,64}. Optimization is performed with the Adam
Optimizer and the learning rate was tuned in {0.1, 0.01,
0.001, 0.0001, 0.00001}. For the set functions we chose
from [25] and [18]. For more details refer to the code
provided.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

	1 Introduction
	2 Preliminaries
	2.1 Problem Setup

	3 Learning Framework and Theory
	3.1 Theory
	3.2 Hyperedge Classification
	3.3 Hyperedge Completion
	3.3.1 Generator(G)
	3.3.2 Discriminator(D)

	4 Results
	4.1 Datasets
	4.2 Experimental Results

	5 Discussion
	6 Conclusions
	7 APPENDIX
	7.1 Examples:
	7.2 Proofs of Properties, Remarks and Theorems
	7.3 Dataset Statistics
	7.4 Experimental Setup

